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Abstract: Riverbank erosion in the Mekong Delta, particularly along the Tien and Hau 

rivers and some primary and secondary tributaries, is undergoing highly complex and 

unpredictable changes, resulting in significant damage to the affected areas. The 

phenomenon of riverbank erosion here is caused by multiple factors, including intensified 

human activities such as sand mining, infrastructure development, and climate change. In 

recent years, the increasing activities of upstream Mekong River projects have led to a 

reduction in sediment deposition in the delta, which is considered one of the significant 

contributing factors to the increasing incidence of riverbank erosion. This paper will apply 

and build a two-dimensional open-source model (TELEMAC) to simulate in detail the 

sediment transport process during the 3-year period from 2017 to 2019 on the upstream 

section of the Tien and Hau rivers in An Giang province to evaluate and assess the sediment 

imbalance during this period and identify trends in riverbed erosion and deposition. As a 

result, in 3 years, the total silt deficit on the Tien River section is -36.6×106 m3, on the Hau 

River is -2.7×106 m3. At the same time, the erosion depth deepened by approximately 0.25-

0.75 m (especially up to 1.0 m). This indicates an imbalance in sediment deposition and 

erosion, with a consistent trend of riverbed, banks, and shore erosion. 

Keywords: Sediment transport; River bed evolution; TELEMAC 2D model. 
 

1. Introduction 

The Mekong Delta is the downstream of the Mekong river basin with an area of 40.9 

thousand km². This place has a dense river network, and its tributaries are quite complex. In 

the upstream of the Mekong River (Tan Chau - Tien River) and (Chau Doc - Hau River), 

where the two rivers flow into the delta, their width is about 60 m to 300 m and gradually 

widens to about 2-3 km in downstream. An Giang province is one of the two upstream 

provinces of the Mekong Delta receiving water from the Tien and Hau rivers from Cambodia. 

This province has a dense system of rivers and canals: Tien River, Hau River, Vam Nao 

River, Binh Di River, Chau Doc River along with large canals such as Xang Tan An Canal, 

Ong Chuong Canal, Xep Nang Gu... are the streams main and important watercourses. These 

main rivers and canals are experiencing changes in their riverbeds, causing complex erosion 

and riverbank landslides, causing the loss of dozens of hectares of land each year, causing 
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major consequences for life and property in the economic areas and residential areas along 

the river. In recent years, under the increasing adverse impacts of flow regimes as well as 

human activities, riverbank erosion has become more and more complicated and more 

frequent. This will be even more serious in the future because of climate change impacts from 

upstream development. The riverbank in An Giang province has quite strong and complex 

erosion. Among the 65 communes along the Tien and Hau rivers in An Giang province, there 

are currently 33 riverbank erosion areas (14 areas along the Tien river and 19 areas along the 

Hau river). Along both sides of the Tien and Hau rivers, there are districts where landslides 

occur frequently: An Phu, Phu Tan, Tan Chau, Cho Moi, Chau Phu, etc. Therefore, research, 

evaluation, and simulation of sand and mud developments and riverbank erosion here receive 

great attention and concern. 

Research on the process of sedimentation and river bed erosion has been carried out and 

researched for a long time. Scientists around the world have focused research on directions 

such as: river morphology, river dynamics, modeling, in the laboratory combined with field 

measurements to determine the causes, mechanisms, and changes in the channel. Based on 

these, solutions were proposed to prevent and mitigate damages caused by bank erosion and 

channel sedimentation [1–7]. However, simulating bank erosion is still a challenging problem 

because the flow of water and sediment through channels changes continuously over time, 

and the diversity of bank materials in nature. This limits the accuracy of numerical models, 

which are often calibrated and applied to specifically simulate idealized natural river systems 

[8]. Furthermore, when integrated with the digital elevation model (DEM), the coarse or fine 

resolution of this model also greatly affects the accuracy of the model. In addition, the 

computation time and financial cost to perform the simulation are also very large, especially 

for large river basins with complex terrain. For example, for braided river sections, such as 

the Mekong River, the complexity of the problem is still a big challenge for scientists. It is 

difficult to select an appropriate approach for all cases [9]. 

Around the world, research has achieved progress in studying sediment transport and 

sand mining on rivers and has solved many complex practical problems such as: Calculate 

the sediment balance in the basin to determine sand reserves along the river and each mining 

location, using mathematical models and statistical methods; Solve economic problems 

combined with river dynamics problems, to determine the optimal exploitation plan that 

brings high economic efficiency with little impact on the environment and self-recovery after 

exploitation period; Combining social issues and harmonizing the rights of subjects in the 

community are also addressed [10–15], etc. 

In Vietnam, riverbank erosion has recently been occurring nationwide, becoming 

increasingly complicated, directly affecting the lives and property of the people, the State, 

and prevention and control works. The study [16] has proposed a model to predict the process 

of erosion - sand and gravel deposition for coastal strips and estuaries at medium temporal 

scale (seasonal and annual), proposed scientific and technical solutions to prevent erosion 

and sedimentation and protect estuary coastal structures. The study [17] has identified the 

causes and mechanisms of evolution (accretion, erosion, displacement) of estuaries along the 

Central Coast, and proposed solutions to adapt and stabilize estuaries such as Tu Hien river 

estuary (Thua Thien - Hue), My A river estuary (Quang Ngai), Da Rang river estuary (Phu 

Yen) for socio-economic development and safety for fishermen and boats to avoid storms. 

The study [18] researched the rules of estuary evolution and evaluated the ability to escape 

floods under different evolution scenarios, taking into account sediment transport in the Vu 

Gia-Thu Bon river estuary. The study [19] has improved HOSODA’s 3D model for 

calculating local erosion in the groin area, which was only applied to the case of bottom mud 

and unflooded sand, now taking into account the movement of suspended sand and 

submerged groynes. Applying physical models to experiment with continuous curves, 

formulas and charts were built to calculate the effectiveness of accretion techniques after 

circulation reversal works. The study [20] has identified the causes and mechanisms of 



J. Hydro-Meteorol. 2024, 20, 1-14; doi:10.36335/VNJHM.2024(20).1-14  3 

formation, movement and sedimentation of the Lai Giang estuary, Binh Dinh province, and 

proposed solutions to correct and prevent estuary sedimentation and stabilize flood drainage. 

Another research on forecasting sedimentation and erosion of the Dong Nai - Saigon river 

channel under the influence of the flood protection system in downstream [21]. 

For the Mekong Delta, studies [22–25] have researched erosion and sedimentation 

forecasts and prevention solutions on the river system in the Mekong Delta: Determine the 

location, scale, and speed of riverbank erosion and identify key erosion areas for the entire 

Tien and Hau rivers using remote sensing and GIS methods. Quantify causes, erosion 

mechanisms and factors affecting erosion for the Mekong River in focus areas. Other studies 

[9, 26–30] have done in-depth research on the causes and mechanisms of landslides in typical 

study areas on the Tien and Hau rivers and oriented solutions to predict riverbank erosion in 

the Mekong Delta. The study [31] used Landsat satellite images on the Google Earth Engine 

platform to study bank erosion of all major rivers in the Mekong Delta for the period 1989 to 

2014. The study [32] built a riverbank erosion prediction model based on high-performance 

computing technology using GPUs combined with implementation based on empirical 

models and applications for some river sections of the Mekong Delta. The study [33] applied 

TELEMAC-3D model to simulate flow and sediment transport at the confluence area of the 

Hau river and the Vam Nao river. The study [28] combined the TELEMAC-2D and MIKE 

21 FM models to analyze the causes affecting the level of riverbank erosion. Remote sensing 

imaging technology was used to analyze and determine the extent of riverbank erosion in the 

Tien River [34]. Thus, in addition to traditional methods such as: using empirical formulas, 

physical models, and actual surveys, there are also methods using numerical models, GIS, 

remote sensing images, etc. Nowadays, there exist many methods that leverage machine 

learning and artificial intelligence to evaluate the riverbed erosion and aggradation. 

Regarding the application of hydrodynamic and sand sediment simulation models in 

river basins, it shows: 1-2- or 3-D models have been established, calibrated and tested in 

previous studies as well as within the framework of projects at all levels to see the usefulness 

of these tools [9, 15–22, 26–27]. However, it is seen that the models differ in terms of usage 

conditions, input data requirements for the model, level of complexity, computation speed 

and accuracy. Certainly, no model can be called the best because each model has different 

advantages and disadvantages. The most important thing is to choose the right model. The 

main factors affecting model selection include: (i) input and output data of the model, (ii) 

applicability, (iii) user’s purpose, (iv) computer hardware responsiveness, (v) software 

purchase costs, and (vi) updateability. If considering the six factors to choose the model 

above, TELEMAC is a very suitable model in this evaluation study, especially suitable for 

individuals or organizations that do not have the financial ability. The TELEMAC model 

system has been developed by the National Laboratory of Hydraulics and Environment under 

the national center for Hydraulic research of Electricity France (EDF) since 1987. This is one 

of the leading river morphology hydrodynamic models in the world that can respond to 

forecasting the morphological change process for estuaries and coastal areas. The 

TELEMAC model has been applied in many studies around the world [35–38]. However, the 

biggest disadvantage of TELEMAC is that it is difficult to use and requires users to have 

certain knowledge of hydrodynamics and programming skills. This study applies the 

TELEMAC model to simulate and analyse the level of riverbed erosion by identifying the 

lack of sediment and sand in the flow. 

2. Materials and methodology 

2.1. Methodology  

a) Hydrodynamic model (TELEMAC-2D): The TELEMAC-2D model solves the depth-

averaged runoff equation based on the two-dimensional Saint-Venant equation [35]. 

The process of performing the simulation model is shown in Figure 1. 



J. Hydro-Meteorol. 2024, 20, 1-14; doi:10.36335/VNJHM.2024(20).1-14  4 

 
Figure 1. General flowchart of study using TELEMAC model. 
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Momentum equation (y direction): 
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where h is the depth (m); u,v are the velocity in x and y directions (m/s); g is the 

gravitational acceleration (m/s2); t Tv , v are the momentum diffusion coefficient and substance 

diffusion coefficient, respectively; Z is the water level (m); Sh is the specific discharge (m/s); 

Sx, Sy are the external forces acting on a unit mass projected in the x and y horizontal 

directions (m/s2). 

b) Morphodynamic model SISYPHE and Mixed sediment 

Sediment transport equation (x and y directions) for vertically averaged suspended 

sediment concentration C = C(x,y,t) is described as: 
( ) ( )k k k kk k k

s s

hUC hVChC C C
h h E D

t x y x x y y
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( ) ( )
eq ref

k k k k

sZref
E D C C− = −         (5) 

The k is constant (k = 1 - sand, k = 2 - mud grains). 

where h = Zs - Zf ≈ Zs - Zref is the depth, assuming the thickness of the bottom mud and 

sand layer is very thin; U is the average velocity in the x direction, V is average velocity in 

the y directions; E is an erosion unit; D: accretion unit; (E – D) is the amount of sediment 

stored; Ceq is the concentration of sediment in near the bottom; Cref is the sediment 

concentration close to the bottom. 

The vertical sediment concentration profile is described by Rouse’s formula: 

       ( )
ref

R

Z

z h a
C z C

z a h

− 
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− 
with s

*

w
R

u
=


        (6)  

where CZref= F×C 
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The change in the riverbed elevation is computed using Exner’s equation as follows: 

( ) ( )
ref

b

z Z

z
1 E D 0

t =


− + − =


        (8) 

where is the void coefficient, zb is the riverbed elevation. 

2.2. Data 

a) Input data 

Upstream boundary: flow taken at Tan Chau and Chau Doc station, average daily flow 

data. Average daily sand and sediment concentration range (SSC) taken from Tan Chau and 

Chau Doc station period 2017-2019 (3 years). 

Downstream boundary taken at water level stations at coastal estuaries at Vam Kenh, 

Ben Trai, Binh Dai, Tran De, average daily water level data period 2017-2019. 

Testing boundary used to calibrate and verify hydraulics and silt content were taken at 

My Thuan and Can Tho hydrological stations. 

b) Establishing domain 

The computational domain is an unstructured grid with 124,644 elements and 8,126 

nodes covering areas, river channels, and riverbanks. The maximum element length is 40.0 

m and the minimum is 5.0 m (Figure 2). 

 

Figure 2. Topography of the computational domain [28]. 

The terrain data consists of elevation data with a resolution of 20 m × 20 m. Additional 

surveying and detailed calculations were conducted to refine the riverbed terrain data, 

achieving a resolution of 3-5 m. The data is inherited from [28]. The model setup is illustrated 

in the hydraulic schematic (Figure 3). The process, model validation is conducted after model 

calibration to check the reliability of the selected parameters with changed input factors. 

Observed station

Boundary province

Elevation (m)
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Calculation time: Since there is no measured water level data that coincides with the time 

of survey, in this study, the period of water level calibration and validation will be chosen 

different from the time of calibration and validation of flow rate and direction. 

 

Figure 3. Research river section (ST1, SH1) and calculation grid. 

c) Set of parameters 

The model validation process is conducted after adjusting the model to recheck the 

reliability of selected parameters with changed input factors. 

Hydrodynamic model: Manning's friction law is applied with friction coefficients from 

0.015-0.032 varying in space. 

Sediment transport model: The composition of sand and mud particles on the Tien and 

Hau rivers is very uneven and complex, ranging from gravel to silt and clay with diameters 

mainly of particles with diameter d = 0.008-8.0 mm. In this study, the bottom structure is 

established in the form of mixed sand mud consisting of two sand grain components (d = 

0.30×10-3m) and mud (d = 0.028×10-3m). The sediment content in each layer is: C1 = 160; 

C2 = 260 (kg/m3). Sedimentation critical stress b = 1000 Pa; Erosion critical stress ce1 = 

0.022 N/m2, ce2 = 0.26 N/m2, the settling velocity of sand and mud particles is vs = 0.15 mm/s 

(sand) and vs = 0.035 mm/s (mud) corresponding to sand and mud composition. The active 

layer is set to 0.05 m and the simulation time step is 120s. 

The simulation results of the numerical model depend greatly on the simulation 

parameters and these parameters are gradually accurate through the model calibration 

process. The basic parameters are summarized in Table 1. 

Table 1. The parameters in the model TELEMAC-2D - Sisyphe. 

Parameter Value Unit 

Model TELEMAC2-D (Hydrodynamic) 

Law of friction  4 (Manning’s)  

Friction coefficient  0.015-0.030 m1/3/s 

Turbulence model 2 (Elder)  

Kinematic viscosity coefficient 10-Jun m2/s 

Secondary currents  
 

Tidal Flats  
 

Cross-section

Elevation (m)
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Parameter Value Unit 

Model SISYPHE (Sediment transport) 

Sediment characteristics Mixed sediment  

Grain diameter 0.33 (sand); 0.035 (mud) mm 

Grain porosity 0.37  

Bed layer 2  

Active layer 0.05 m 

Sludge content per layer 70; 80 (from top to bottom) kg/m3 

Erosion critical stress of mud  0.021; 0.085 N/m2 

Critical shear velocity for mud deposition 1000 m/s 

Partheniades constant 1.5×10-4 kg/m2/s 

Effect of slope  
 

The sediment content is balanced close to the bottom 
( )

( )

1.75

c

eq 1.75

c

0.331 '
C

1 0.72 '

 −
=

+  −

  

Settling velocity 0.15 (sand); 0.035 (mud) mm/s 

Influence of secondary flow  
 

Crust friction ks
' = 3.6d50 mm 

Time step  120 s 

Simulation scenario: According to research, under the condition of a complete upstream 

hydroelectric system, the amount of sediment and sand reaching Tan Chau and Chau Doc 

will be reduced by about 80% compared to 2015 [27]. According to the latest report of the 

Mekong River Commission Secretariat (April 22, 2024, Phnom Penh, Cambodia), the 

average sand and sediment content (g/l) decreased by 8% in Tan Chau and 5% in Chau Doc 

[34]. However, these data only reflect the amount of sediment at Tan Chau and Chau Doc 

stations, it does not show the river morphology relationship, that is, how the sediment 

imbalance occurs. This study will simulate in detail the sediment transport process during the 

3-year period from 2017 to 2019 on the mainstream of the Tien (ST1) and Hau (SH1) rivers 

in the upstream of An Giang province to evaluate the sediment imbalance and identify trends 

in riverbed accretion and erosion. 

3. Results and Discussion 

3.1. Results of model calibration and validation 

The results of water level calibration and validation are shown in Table 2, Figure 4. The 

criteria show that the results are good: MSE = 0.2-0.47; ME = 0.05-0.2; Nash = 0.72-0.89. 

Table 2. Water level error and correlation values. 

Station 
Min Max Average ME MAE MSE R NASH 

OBS SIM OBS SIM OBS SIM      

Dry season 2018 

Can Tho -0.87 -1.22 1.42 1.38 0.39 0.19 0.20 0.28 0.32 0.90 0.76 

My Thuan -1.20 -1.24 1.40 1.80 0.28 0.24 0.04 0.21 0.47 0.90 0.85 

Flood season 2018 

Can Tho -0.24 -0.52 1.91 2.15 0.75 0.60 0.15 0.20 0.20 0.96 0.72 

My Thuan -0.84 -1.03 1.79 2.00 0.47 0.42 0.05 0.17 0.33 0.98 0.89 

OBS: observation, SIM: Simulation, ME: average absolute error, MAE: average error, MSE: square error, 

R: Correlation coefficients. 
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Figure 4. Illustration comparing water level process between simulation and actual measurements 

during the flood season (8/2018). 

The results of discharge calibration and validation at Can Tho and My Thuan stations 

are shown in Table 3, Figure 5. The calibration results give quite good results: R = 0.90-0.95 

and Nash = 6.8-0.84. 

 

Figure 5. Illustration comparing discharge process between simulation and actual measurements 

during the flood season (8/2018). 
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Table 3. Discharge error and correlation values. 

Station 
MIN MAX TB ME MAE R NASH 

OBS SIM OBS SIM OBS SIM     

Dry season 2018 

Can Tho -18.5 -21.4 16.8 17.7 2.0 1.8 0.2 3.3 0.95 0.84 

My Thuan -15.0 -18.3 17.6 19.1 2.3 4.6 2.3 3.6 0.90 0.74 

Flood season 2018 

Can Tho -2.9 -13.2 23.5 22.4 15.3 12.8 2.4 2.7 0.91 0.68 

My Thuan -3.8 -1.3 25.6 27..0 17.5 17.7 0.1 2.1 0.90 0.70 

Suspended sediment content (SSC): Calibration and validation results at Can Tho and 

My Thuan stations are shown in Table 4, Figure 6. Calibration and validation results show 

that the error between simulation and actual measurement is very low. Seasonal changes in 

sediment and sand content are regular and consistent with seasonal flow changes. Thus, the 

simulation results are very good, showing that the model is highly reliable. 

Table 4. Suspended sand and sediment content error and correlation values. 

Station Min Max Average ME MAE MSE 

OBS SIM OBS SIM OBS SIM 

   

Dry season 2018 

Can Tho 0.015 0.018 0.038 0.025 0.026 0.022 0.004 0.005 0.00003 

My Thuan 0.018 0.030 0.046 0.040 0.033 0.033 0.000 0.006 0.00004 

Flood season 2018 

Can Tho 0.062 0.094 0.122 0.182 0.093 0.131 0.038 0.042 0.000 

My Thuan 0.093 0.175 0.320 0.279 0.218 0.217 0.001 0.039 0.002 

 

Figure 6. Illustration comparing SSC between simulation and actual measurements from 1/2018 - 

6/2019. 

The results of adjusting and testing the parameters of the open-source model TELEMAC 

2D (Sisyphe - Mixed sediment) show the reliability of the parameters. 
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3.2. Simulation results  

On the Tien River, at section ST1, the sediment flow passing through has a value of Qtb 

= 1,327 kg/s, Q+ = 9,872 kg/s, Q- = -4,668 kg/s. At the Cross section SH1 On the Hau River, 

the transport volume of sediment and sand is much smaller than that on the Tien River. the 

sediment flow passing through has a value of Qave = 232 kg/s, Q+ = 5,605 kg/s, Q- = -408 

kg/s.  

On the Tien River at section (ST1), in the dry season, the maximum suspended sand 

transfer rate is from 6.4×10-3 m2/s, in flood season is 7.5×10-3 m2/s. Meanwhile, at section 

(SH1) on the Hau river, the sand transfer rate is smaller than that of the Tien river. In the dry 

season, the greatest value is 3.5×10-3 m2/s, in flood season is 7.0×10-3 m2/s. 

After 3 years, the total deficit in sediment and sand compared to the beginning of the 

simulation period is -36.6×106 m3 at the section (ST1) and -2.7×106 m3 at the section (SH1).  

Also from the simulation results, it shows that upstream of Tien River, the right bank 

tends to accumulate, the left bank tends to erode (there are many erosion locations from 0.25- 

0.5 m). For upstream of the Hau River, both banks tend to erosion and the level of erosion is 

also quite high, from 0.5-0.75 m, even up to 1.0 m in many places. 

Thus, the upstream area is not able to balance sediment and always tends to lose sediment 

due to the process of transporting sediment from the upstream to the downstream area. 

Therefore, the upstream erosion trend is almost inevitable (Figures 7-8). 

  

Figure 7. Illustration of bottom changes in the study areas. 

  

Figure 8. Illustrates the total of sediment accumulated at two study locations. 



J. Hydro-Meteorol. 2024, 20, 1-14; doi:10.36335/VNJHM.2024(20).1-14  11 

Due to the influence of seasonal regime, the sediment transport volume in the flood 

season is larger than in the dry season. During the dry season, sediment and sand are 

transported in both directions, but the amount of sediment and sand transported in the positive 

direction appears more often than in the opposite direction. During the flood season, sediment 

transport is mainly in the positive direction and this is even more evident when moving 

upstream. 

4. Conclusion 

In this study, the TELAMAC 2D model (Sisyphe - Mixed sediment) was applied and 

built for the main river system in the Mekong Delta with a set of parameters that were 

calibrated and validated to achieve a good level with Nash index > 0.68 (good), correlation 

coefficient R > 0.85 (very good) and errors are all within allowable limits. This shows the 

reliability of the model as well as the stability of the model parameters. 

Simulation results of the sediment transport process and assessment of the sediment 

balance for the two upstream sections of the Tien and Hau rivers (An Giang province) have 

shown that after 3 years, the total amount of sediment lost over Tien River section is -

36.6×106 m3 at section (ST1) and -2.7×106 m3 at section (SH1). The erosion depth deepened 

by approximate 0.25-0.75 m (especially up to 1.0 m). Thus, the upstream area has an 

imbalance in sediment and sand and always tends to erode the riverbed, banks and beaches. 

These values are not fundamentally different from previous studies such as [26, 27]. 

With this result, this research makes a small contribution to the development of the 

TELEMAC open-source model with the world scientific community. Furthermore, the 

simulation results have partly shown the trend of riverbed erosion and aggradation in the 

upstream section of the Cuu Long River, in An Giang province. 

The application and use of the open-source model have great potential, but further 

research and applications are needed to demonstrate its usefulness. This study is only the first 

step, and more research is needed in other basins. 

Calibration and validation results do not yet cover all hydrological and hydraulic 

conditions and different mining activities, so the stability and reliability of the parameter set 

is limited. 

The calculation results of the value of sediment deficiency are only at a relative level. 

Simulations for longer sections and the impact of human activities on the river are needed to 

show more realistic results. 
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Abstract: The presence of an overlying coal pillar (OCP) strongly influences the stress 

distribution and deformation of the surrounding rock of the roadway and working face. In 

this paper, the stress distribution characteristics under the coal pillar are analyzed through 

numerical simulation using the FLAC3D program. Multi-coal seam mining conditions at 

Thong Nhat coal mine were selected as the technical foundation. Research results show that 

the presence of coal pillars acts as a bridge to transfer loads from the roof rock strata to the 

floor, and therefore it forms a high-stress concentration zone with an oval shape under the 

coal pillar. Caused by stress superposition, abutment stress distribution rules are affected by 

the distance from the roadway or working face to the OCP. In the concentrated stress zone 

of the OCP, the abutment pressure at the roof and floor of the roadway increases by 2 times 

and puts the road into a dangerous deformation condition. Meanwhile, when the working 

face approaches the OCP, the front abutment pressure value increases 1.3 times, and the 

range of the high-stress zone increases 2 times. Thus, the presence of OCP has changed the 

stress distribution law in the direction of increasing the value and distribution range of the 

maximum stress area, and it affects the roadway and working face of the coal seam below. 

The research results of this article will be an important document as a basis for researching 

technical solutions to meet the requirements for safe mining in underground coal mines. 

Keywords: Coal pillar; Stress distribution; Abutment pressure; Multi-seam mining; 

Roadway; Longwall face. 
 

1. Introduction 

In the realm of coal mining, particularly in multi-seam operations, the stress distribution 

beneath coal pillars is a critical factor influencing mine stability. The coal pillars, acting as 

primary support structures, bear the overburden pressure and redistribute stresses within the 

seam. In multi-seam mining, the interaction of stresses between seams adds complexity to 

this distribution. The stress concentration around the pillars can lead to pillar failure and 

ground control problems, posing significant safety risks. Therefore, understanding and 

accurately predicting the stress distribution under these conditions is crucial for safe and 

efficient mining operations. 
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In underground coal mining, the success of a mining enterprise is determined by many 

factors. One of them is the stability of roadways and longwall faces. This task becomes even 

more complicated when multi-coal seams mining. In the mining plan of underground coal 

mines in Vietnam, the mining order is carried out sequentially from the upper seam to the 

lower seam. In this case, the longwall face or roadway in the lower coal seam is placed under 

the gob or coal pillar of the upper coal seam. Production practice and theory have proven that 

the coal pillar of the upper coal seam will become a place where stress from the roof rock 

strata is concentrated, and this can increase abutment pressure to a seriously threatening level 

to the safe production of coal mines [1, 2]. Studies on the influence and control of OCP on 

roadway stability and the exploitation of the lower coal seam have been the focus of many 

scientific works. Liu et al. combined theoretical analysis with field testing, allowing them to 

detect abnormal magnitudes of abutment pressure when mining coal seams under the OCP 

[3]. The study [4] used numerical simulation and theoretical analysis to obtain the asymmetric 

stress distribution law under the coal pillar. With this result, they research and design the 

optimal location of the roadway to increase roadway control and labor safety. The study [5] 

studied the stress distribution law in the upper coal pillar according to soil mechanics 

principles and numerical analysis. They discovered an abnormal increase in the value stress 

on the roof of the roadway and longwall face when their position is under the stress 

concentration zone of OCP. Xia, Huang et al. focused on studying the influence of the OCP 

on the cracking of hard strata, and the abutment pressure under the coal pillar in case of dual 

effect when multi-seam mining [6–8].  

In addition, there are some other notable projects such as Investigation of strong strata 

behaviors in the close-distance multiseam coal pillar mining [9], this study delves into the 

behaviors of strong strata in the context of close-distance multiseam coal pillar mining, 

providing valuable insights into the dynamics of such environments. Coupling control on 

pillar stress concentration and surface cracks in shallow multi-seam mining [10], it focuses 

on the interplay between pillar stress concentration and surface cracks in shallow multi-seam 

mining, offering a comprehensive understanding of the factors influencing these phenomena 

when applying technical solutions of coal mining and gas extraction without coal pillar in 

multi-seam with low permeability [11]. These studies investigate the failure mechanisms of 

gob-side roadways under the pressure of overlying coal pillars in multiseam mining, as well 

as the design considerations for multi-seam mines intended for coal extraction [12, 13]. 

Implementing a rational coal pillar design in multi-seam mining, and achieving the coupling 

control of underground concentrated stress and surface fractures [14]. In order to boost 

underground coal production in India, supports are essential. Longwall mining, which 

involves an array of chain pillars, is used in multi-seam longwall mining panels in India’s 

deepest coal mine. This method helps in maintaining the stability of the mine and ensures the 

safety of the miners while maximizing the extraction of coal [15]. In the research [16], the 

authors first obtained the rock by using a coal mine with multi-seam mining in Datong as a 

case study. Then, based on the geological conditions, we proceeded with the physical 

analysis. This approach allows us to understand the complexities of multi-seam mining and 

provides valuable insights for improving mining efficiency and safety. The next steps of the 

study would likely involve further analysis and testing based on these physical conditions. 

The extensive and interconnected movements of multi-seam goaf have exacerbated issues 

when the longwall is mined under the edge of mining panels and remnant pillars within the 

mine. This situation presents significant challenges in maintaining the stability of the mine 

and ensuring the safety of the miners. It underscores the need for careful planning and robust 

support structures in multi-seam mining operations. Further research and development are 

required to mitigate these issues and enhance the efficiency and safety of longwall mining 

under such complex conditions [17]. The study [18] aims to understand the dynamics of coal 

pillar positions and their impact on the stability and safety of mining operations. It provides 
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valuable insights into the optimal positioning of coal pillars to prevent potential hazards and 

improve the efficiency of multi-seam mining operations. Further details would likely involve 

the specific methodologies used and the findings from the Research. 

The studies related to the coal pillars mentioned above focus on the instability of coal 

pillars and the law of stress propagation through the coal pillar to the floor. However, in small 

slope angles areas of the coal seam, OCP may be perpendicular to the longwall face and the 

lower roadway. In this case, studies on the stress distribution characteristics in the OCP that 

affect the roadway and longwall face under are not much. The resonance effect of stress in 

the OCP and the abutment stress in front of the longwall face is very complicated. To clarify 

this issue, the article takes the mining conditions at coal seams 4C and 3C in the Thong Nhat 

coal mine as the research object. 

2. Materials and Methods 

The technical foundation for this study is mining conditions at 4C and 3C coal seams in 

the Thong Nhat coal mine, Quang Ninh region, Vietnam. Coal seam 3C is located under and 

the distance between the two seams is 7.5 m. Coal seam 4C was mined first, in which a 25 

m-wide coal pillar was left in the gob. The roadway and longwall faces at coal seam 3C are 

perpendicular to the coal pillar of seam 4C. The relationship of the coal pillar at seam 4C 

with the roadway and longwall face at seam 3C is presented in Figure 1. Coal seams 4C and 

3C are in depth 313 m and 320.5 m, respectively. They have a slope angle of 70 and a 

thickness of 3m and 4.5 m, respectively. The surrounding rocks are respectively layers of 

claystone, siltstone, and sandstone. See Figure 2 for map of the research area and stratigraphic 

columns in the study area. For the physical and mechanical properties of surrounding rocks, 

see Table 1. 

 

Figure 1. Three-dimensional diagram of the relative position of the OCP with roadways and longwall faces. 

Table 1. Properties of rocks and coal in the study area. 

Type rock 

Tensile 

strength 

(MPa) 

Bulk 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Poisson’s 

ratio 

Cohesion 

(MPa) 

Friction 

angle 

(deg.) 

Density 

(kg/m3) 

Fine-

sandstone 
1.75 8.120 3.642 0.30 3.15 38 2840 

Sandstone 1.63 7.451 3.240 0.31 3.21 34 2775 

Mudstone 0.98 2.342 0.950 0.32 2.16 30 2556 

Siltstone 1.25 1.826 0.609 0.34 1.83 26 2250 

Coal 0.5 0.755 0.486 0.26 1.45 19 1460 
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Figure 2. Map of the research area, stratigraphic and petrographic column. 

The numerical modeling research method with the Flac3D program is used in this study: 

FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) is numerical modeling 

software for geotechnical analyses of soil, rock, groundwater, constructs, and ground support. 

FLAC3D utilizes an explicit finite volume formulation that captures the complex behaviors 

of models that consist of several stages, show large displacements and strains, exhibit non-

linear material behavior, or are unstable (including cases of yield/failure over large areas, or 

total collapse). This is a finite element model with construction materials such as coal and stone 

considered elastic materials that meet the Mohr-Coulomb durability criteria [19]. The model 

dimensions are 350 m long, 265 m wide, and 140 m high. The side boundaries of the model 

have been fixed to displacements in the horizontal direction, and the bottom boundary has been 

fixed to displacements in the horizontal and vertical directions. The top boundary of the model 

is not constrained in displacement. Natural load is applied to the upper boundary of the model 

with a vertical stress of 6.5 MPa. The upper specific gravity is assumed to be 0.025 MN/m3, and 

gravity is also applied. The stratigraphic and rock mechanical parameters used in the model are 

similar to the study area conditions at seams 4C and 3C of the Thong Nhat coal mine (Table 1). 

The model structure diagram is presented in Figure 3. 

 

 

Figure 3. Structure diagram of the simulation model. 

In this model, the 4C coal seam is exploited first. During the exploitation of seam 4C, 

coal pillars with a width of 25 m are formed in the gob. Next, two roadways were excavated 

in the 3C coal seam in a direction perpendicular to the coal pillar. Finally, panels on the 3C 

coal seam are mined in a direction perpendicular to the coal pillar. The distance between coal 
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seams and their distribution depth is similar to Figure 2. During model implementation, stress 

data is extracted at the location of coal pillars, roadways, and longwall faces. Model's 

research structure diagram, see Figure 4. 

 

Figure 4. Research structure diagram. 

3. Results and Discussions  

3.1. Stress distribution under the coal pillar 

When there is no OCP, crack development occurs under the gob of the 4C seam to a 

certain extent. Therefore, when mining coal seam 3C, the integrity of the coal seam and its 

roof is broken, it causes a certain pressure drop during the mining of the coal seam. In the 

presence of OCP, stress concentrations are formed in the coal pillar [20]. The coal pillar then 

acts as a bridge to transfer stress to the coal seam 3C (Figure 5). 

 

Figure 5. Vertical stress distribution under the coal pillar. 

Figure 5 shows that the coal pillar completely bears the load of the roof rock strata. 

Therefore, there is quite a high stress concentration in the coal pillar. The stress at the center 

of the coal pillar is 17.2 Mpa and then gradually decreases to the two sides. Under the gob 

area, the vertical stress is quite small, only 1.8-3.4 Mpa. However, near the coal pillar, stress 

increases rapidly. The high-stress zones under the coal pillars are oval and appear to extend 

vertically. At a distance 37 m under OCP, the vertical stress is 7.2 Mpa, nearly equal to the 
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initial static stress. And then, the vertical stress increases rapidly when approaching the coal 

pillar. The vertical stress is 10.7 Mpa at a distance of 20 m under the coal pillar. This value 

is respectively 15.5 Mpa and 16.3 Mpa when distances 10 m and 5 m, correspond. 

Production practice shows that high stress in the surrounding rock is an unfavorable 

working environment for underground coal mining. In this condition, the risk of rock burs 

can occur and threaten labor safety. Especially when mining coal seams at close distances, 

the status of roadway deformation and support destruction often at the Thong Nhat coal mine. 

Therefore, it is necessary to eliminate OCP when multi-seam mining. 

3.2. Stress distribution when the roadway is excavated under the coal pillar 

Corresponding to the research conditions at seams 4C and 3C at the Thong Nhat coal 

mine (the distance between the two seams is 7.5 m), the stress distribution when excavating 

the roadway under the coal pillar is shown in Figure 6. 

 

Figure 6. The stress distribution under the coal pillar corresponds to the distance to the working face 

of the roadway: (a) 20 m from the coal pillar; (b) 10 m from the coal pillar; (c) meet the coal pillar; 

(d) in the middle of the coal pillar; (e) when starting to pass the coal pillar; (f) pass 10 m coal pillar; 

(g) pass 20m coal pillar; (h) completely surpasses the coal pillar. 

Figure 6 shows a significant change in stress distribution when excavating the roadway 

under the coal pillar. When the roadway is far from the coal pillar, the stress distribution in 

the surrounding rock of the roadway follows the normal law. However, when the roadway 

approaches the coal pillar, the superposition of stress from the coal pillar and the abutment 

pressure in front of the working face of the roadway increases. Specifically, when the distance 

between the coal pillar and the working face of the roadway is 20 m, the front abutment 

pressure is 6.2 Mpa and increases to 9.6 Mpa at a distance of 10 m. When the roadway begins 

to enter the area under the coal pillar, the superposition of stress from the coal pillar causes 

the maximum stress value to increase to 13.1 Mpa. When the roadway was excavated to the 

middle of the coal pillar, the maximum stress value began to decrease to 10.6 Mpa. However, 

almost all the stress from the coal pillar is transmitted to the roof of the roadway, the stress 

value reaches 10.5 Mpa. This can be explained by the failure of the surrounding rock mass 

the effect of eliminating the stress concentration in front of the roadway, and the roadway 

under the coal pillar would bear the entire load loaded of OCP. Therefore, there is a high risk 
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of rock bursts on the roof of the roadway. As the roadway begins to pass the coal pillar, the 

abutment stress in front of the roadway decreases to 8.2 Mpa and is stable at 6.0 Mpa. The 

stress area from the coal pillar loading on the roadway remains unchanged compared to the 

previous case.  

Figures 6e-6g, 6h show a large stress area from the coal pillar with a stress value of 10-

10.5 Mpa acting on the roof of the roadway. At the same time, a high-stress zone with a stress 

value of about 8.3 Mpa is also formed on the floor of the roadway. These stress values are 

almost 2 times higher than in other areas. At this location, the roadway is pressed from both 

roof and floor, causing the phenomenon of falling roof rocks and floor heave. This explained 

the deformation of roadways that frequently occurred when excavating them under coal 

pillars. According to statistics at the Thong Nhat coal mine, the frequency of repairing these 

roadways is every 4-5 months. Frequent roadway repairs have hurt production efficiency and 

labor safety. 

3.3. Stress distribution when mining panels under coal pillars 

 The stress distribution in front of the longwall face when performing panel mining under 

the influence of coal pillars is shown in Figure 7. 

 

Figure 7. Stress distribution in front of the longwall face under the influence of the OCP, when the 

distance between the longwall face and the coal pillar: (a) 70 m, (b) 50 m, (c) 30 m, (d) 10 m, (e) 

approaching OCP, (f) in the middle of OCP, (g) passing the OCP. 

As seen in Figure 7, the stress distribution in front of the working face differs greatly in 

the cases of the absence or presence of the OCP. When the distance between the longwall 

face, and the OCP is 70 m, the abutment stress in front of the longwall face increases, then 

decreases and increases again due to the stress concentration under the OCP. In Figure 7a, 

the abutment stress is formed in the form of two peaks in front of the longwall face. A 

maximum stress of 15.3 MPa was observed at a distance of 15 m from the longwall face, 

while the maximum stress under the coal pillar was 17.2 Mpa. As the longwall face advances, 

the abutment stress peak in front of the longwall face decreases to 13.8 Mpa at a distance of 

50m. The main reason is that the gob area next to the coal pillar of the upper seam has been 

unloaded and reduced the stress concentration, so the stress of the surrounding rock is 
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significantly reduced. As the longwall face continues to excavate forward and at a distance 

of 30 m from the coal pillar, the abutment stress in front of the longwall face only remains a 

single peak under the coal pillar. The maximum value of abutment stress does not change 

much, however, under the interference of the stress in front of the longwall face and the stress 

under the pillar, the high-stress area is expanded 1.5 times compared to the coal pillar. It can 

be seen that OCP strongly impacts the longwall face within a range of less than 50 m and a 

rapid increase in stress in the coal seam. When the longwall face is at a distance of 10 m and 

approaches the coal pillar, the front abutment stress area gradually narrows and shifts to the 

opposite side. The maximum stress value remains at 17.2 Mpa. When the longwall face is in 

the middle of the OCP, the abutment stress peak begins to move away from the coal pillar, 

and the maximum stress value is 16.3 Mpa. When the longwall face passes the OCP, the 

abutment stress in front of the longwall face returns to normal with a maximum stress value 

of 13.3 Mpa at a distance of 15m and then stabilizes at 12.6 Mpa.  

Figure 7 implies in the absence of OCP, the maximum stress in front of the longwall face 

is lower. In the presence of OCP, the maximum stress value is higher and the distribution 

range is wider. As the longwall face approaches the OCP, the abutment stress increases 

sharply and maintains a high value. The area affected by stress concentration in OCP is larger 

and stable control of the longwall face becomes more difficult. 

4. Conclusion 

- Simulation results show that the appearance of OCP will form an oval-shaped enhanced 

stress concentration zone. The coal pillar acts as a bridge to transmit the entire load of the 

roof rock strata to the coal seam below, significantly affecting the stress distribution when 

excavating the roadway and mining panels. In the presence of OCP, the maximum stress will 

be higher and spread across the width of the OCP. Residual stress from the coal pillar will 

compress the roadway vertically from the roof and floor. Therefore, if not well supported and 

corresponding technical solutions are applied, the roadway will deform and be destroyed. 

- The presence of OCP affects the stress distribution in front of the longwall face. When 

the longwall face in the lower coal seam is far from the coal pillar, the stress distribution in 

front of the longwall face is relatively stable and follows the law of abutment pressure. When 

the longwall face approaches the OCP, the superposition of the coal pillar's stress and the 

abutment stress causes the maximum value of the stress to increase significantly and expand 

the influence area by 1.5 times. With this condition, the scope of overburden collapse in the 

roof and working face expands and causes rockburst safety risks.  

- The result of the research found the law of stress distribution under the coal pillar. This 

is an important factor in finding solutions to ensure safety when excavating roadways and 

mining longwall faces of the adjacent seam below. The main gap in the research is that the 

model can only simulate a specific geological case. The variation in thickness and slope angle 

of the rock layers has not yet been considered. However, this is also the basic foundation for 

developing subsequent research projects according to different parameters of coal seam 

thickness, distance between coal seams, and other parameters. The research results will be 

the basis for mine managers to develop plans and operate mines safely. 
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Abstract: Three-dimensional building models play a crucial role in urban planning, 

emergency response, disaster management, and decision-making. Multi-sensor data fusion 

has recently attracted significant interest in the Geomatics research community. This 

approach addresses the limitations of individual sensors, allowing for the creation of 

comprehensive 3D models of structures and improving object classification. This study 

focuses on developing approaches that combine various geospatial technologies to produce 

a complete 3D model of common urban architectures, including high building, neighboring 

villa, and individual home. This research used flexibly employ UAV aerial imagery, ground 

photography, and terrestrial LiDAR scanning to collect the necessary information for 

constructing complete 3D models of each characteristic urban structure. Different point 

cloud datasets will be processed, merged, and used to generate the competely 3D models. 

The experimental results have produced complete 3D models with accuracy achieved with 

Δx; mΔy; mΔz all below 10 cm for the experimental buildings. With the accuracy of the 3D 

models, it is entirely possible to achieve accuracy in horizontal plane and height for the 

1:500 scale terrain map. 

Keywords: 3D building models; Multi-sensor points data fusion; Halong city; Vietnam. 
 

1. Introduction 

Buildings are some of the most significant features in urban environments and are 

modeled for a range of uses, such as simulating air pollution, estimating energy use, detecting 

urban heat islands, and many other applications [1]. Three-dimensional (3D) building models 

play a crucial role in urban planning, emergency response, disaster management, and 

decision-making processes. 3D buildings aim to represent the geometry and appearance of 

reality, enabling us to see the city as it currently exists, how it appeared in the past, and how 

it is likely to appear in the future. Efficiently creating these models enhances digital library 

content concerning buildings and infrastructure and provides managers with essential tools 

for visualization and decision-making [2]. The concept of a three-dimensional (3D) model or 

representation is frequently linked to the future due to its status as an increasingly utilized 

and evolving technology [3]. Advanced technologies in recent years have enabled the 

creation of accurate and intricate 3D models for depicting buildings as they were constructed 

[4]. There are some different data acquisition techniques used to create the 3D object 

modeling: lidar, radar, camera (photogrammetry), and total stations [2, 5–7]. Images captured 

by drones are utilized to attain exceptionally detailed 3D models, enabling the reconstruction 

of both the geometry and texture of the examined objects [1, 8–10]. Drones are now 

extensively employed for data gathering and 3D reconstruction objectives.  
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The quality of the resulting 3D data significantly relies on factors such as the 

specifications of the sensors utilized, the setup of the photogrammetric network, and the 

outcomes of image orientation. The growing adoption of UAVs in surveying tasks is largely 

attributed to their lightweight design and affordability. UAVs, which are unmanned, reusable 

motorized devices, generally hover vertically at low altitudes just a few meters above objects 

[1, 11]. Moreover, through the implementation of UAV photogrammetry, UAVs can swiftly 

gather data and offer high-resolution aerial photographs. Subsequently, the gathered data can 

be employed to recreate the terrain of a model representing the research area, resulting in 

highly detailed 3D mapping and modeling. This process considers factors such as image 

overlap, scale adjustments, and flight altitude [12]. Scanning surveys offer an advantage in 

terms of time efficiency, as they are automated and capable of capturing numerous details in 

a single scan, minimizing the risk of overlooking any details. In the current development 

trend, 3D Laser Scanning technology (TLS - Terrestrial Laser Scanner) is becoming known 

and applied in surveying and inspecting structures, gradually replacing the aforementioned 

devices due to its higher accuracy than UAVs, as the scanner is fixed on the ground. The 3D 

Laser Scanning equipment has the capability to collect numerous point clouds in space, which 

capture the detailed surface shapes of objects. Each point in these clouds contains coordinate 

information (XYZ) and color parameters. Besides, ground-based digital camera is another 

low-cost data acquisition technique, which is currently used in 3D modeling applications 

[13–18]. Unfortunately, however, digital cameras are restricted by line-of-sight limitations. 

Consequently, it can be observed that each data acquisition method has its own strengths and 

weaknesses. Hence, the fusion of data emerges as a critical concern for generating accurate 

3D object models [19–21]. 

In Vietnam, the government has determined that developing smart cities is the best 

choice to support the current urbanization and economic growth process. Quang Ninh 

province and Ha Long city are making significant progress to align with the Government's 

strategy and priorities for smart city development in Vietnam. When constructing 

comprehensive 3D information models for urban areas, it’s crucial to consider the distinctive 

features of coastal cities in Vietnam, considering the specific conditions present in each 

locality throughout the country.  Previous domestic studies have shown that researching the 

construction of 3D models for some urban construction projects by integrating geospatial 

technologies remains limited. Moreover, the majority of recent studies only utilize a single 

type of geospatial technology to collect 3D information of individual construction objects 

[22, 23]. There have been few studies describing the process of integrating geospatial 

technologies to build high-precision 3D models for complex and characteristic structures 

such as coastal urban areas in Vietnam. 

This research focuses on two main goals: (1) To propose a process for applying 

geospatial technology in collecting 3D spatial information for characteristic construction 

objects in coastal urban areas; (2) To develop high-precision 3D models for characteristic 

construction objects in Ha Long city, Quang Ninh province. Vietnam encounters a new 

challenge when it comes to processing data from diverse sensor sources. Currently, research 

predominantly concentrates on managing data from a solitary technology type, like UAV or 

aerial Lidar, terrestrial Lidar, or ground-based stereophotography. Managing data from a 

single sensor source is considerably simpler than handling data from multiple sensor sources 

with differing resolutions. Consequently, this persists as a challenge in developing thorough 

3D models for particular construction projects in Vietnam. 

2. Materials and Method 

2.1. Description of the study site 

The experimental area is located in Bai Chay ward and Hung Thang ward, Ha Long city, 

Quang Ninh province, Vietnam (Figure 1a), primarily encompassing the high-end coastal 
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urban area developed by BIM Group. The urban area consists of individual villas and 

adjacent villas. Additionally, it includes internal transportation systems, water supply and 

drainage systems, and public facilities serving the community. There are also several high-

rise buildings along the main roads, serving as residences, hotels, or office headquarters for 

various organizations. 

 

Figure 1. The study site. 

Phat Linh Hotel Ha Long is a 5-star luxury hotel, located at A9, Lot 1, Ha Long Marine 

Boulevard, Ha Long city, Quang Ninh Province (Figure 1a). Phat Linh Hotel is a tall as being 

at least 120 m, continuously habitable building having 25 floors (Figure 1b). 

The individual building is the Hạ Long New Day 2 hotel, a 5-story structure with an area 

of approximately 70 m², located as shown in Figure 1 (yellow boundary). The area 

surrounding the building is quite open. Architecturally, the building has a simple design 

typical of small hotels, with the front featuring large glass windows on the first floor and 

smaller windows on the upper floors (Figure 1c). 

The neighboring villa consists of two rows of 5-story houses facing away from each 

other, currently in the handover and usage phase. The architecture is characterized by square 

geometric shapes, numerous glass windows, and uniformity among the units (Figure 1d). 

2.2. Methodology 

The methodology of this study can be categorized into three phases: data acquisition, 

data processing, result and accuracy assessment (Figure 2). 
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Figure 2. The flowchart of study. 

2.2.1. Data acquisition 

a) TLS data collection 

FARO FOCUS3D X130 TLS has been used as the main scanning system to capture point 

cloud data from different locations. During the field operation, 11 scans have been completed 

around the high building to capture the details of the building and create a good overlap 

between the scans (Figure 3a). FARO FOCUS3D X130 has an integrated camera that allows 

the acquisition of the images needed to assign RGB values to every single point cloud. 

 
Figure 3. FARO FOCUS3D X130 TLS has been used to collect data. 

 

(a) (b) (c)
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b) UAV image acquisition 

The UAS data acquisition has been performed using a low-cost DJI Phantom 4 Pro, in 

order to acquire a complete coverage of the building of interest, the flights have been planned 

and then executed for high building, individual building, and neighboring villa (Figure 4). 

 

  

   

                (a) 

 

                        (b) 

 

                                 (c) 

 

 

 

 

Figure 4. Data acquisition techniques by DJI Phantom 4 Pro V2.0. 

c) Ground-Based digital camera data collection 

The task of designing the photo capture route essentially involves arranging the digital 

photography stations. Based on the accuracy requirements, camera parameters, and the 

characteristics of the field, the parameters for each ground photo capture route for buildings 

are determined (Figure 5). 
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Figure 5. The collected data from the terrestrial camera (TC). 
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2.2.2. Data processing 

Integration of point clouds from multi-sensor: To improve the accuracy of the point 

cloud after merging, the ICP method is used [24]. Before concatenation, the UAV, TC and 

TLS point clouds are filtered for noise (Figures 6, 7). Filter noise from point clouds to remove 

points of unimportant objects such as wires, trees, etc. or points that were wrong in previous 

processing. In addition, noise filtering also reduces the capacity of the point cloud. Because 

the TC and TLS point cloud have a higher density of points and higher accuracy, it is used 

as the base point cloud and the UAV point cloud is the composite point cloud. 

The data concatenation process consists of two steps: Coarse Alignment and Fine 

Alignment. In which, in the raw coupling step, it is necessary to select at least 4 duplicate 

points on two points cloud. This can be a focal point, a control point, or a sharp feature on 

two points cloud. During the exact matching stage, there is a notable increase in the number 

of points involved in the matching process, resulting in enhanced accuracy of data matching 

albeit at the expense of longer processing time. The concatenation of point cloud data in both 

steps is executed using Cloudcompare software. 

 

Figure 6. Flowchart in data processing phase for high building. 

 

Figure 7. Flowchart in data processing phase for individual building and neighboring villa. 

UAV images processing

Point clouds from UAV

TLS data processing

Point clouds from TLS

Integration of Point clouds from

TLS and UAV
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Point clouds from UAV
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TC and UAV

Accuracy assessment

The 3D model of building
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2.2.3. Accuracy assessment 

To evaluate the accuracy of 3D point clouds integrating geospatial technologies of 

construction projects, it is necessary to arrange the above image control points on the surface 

and around high buildings and independent buildings, and adjacent villa area. The points are 

arranged evenly on all sides of the building, with the point layout diagram as shown below. 

 

Figure 8. Distribution of image control points and checkpoints. 

3. Results and discussion 

3.1. Points cloud data of buildings 

a) Point clouds from TLS data 

The processing TLS data includes steps: (1) create project, (2) import data of scanning 

stations (Import), (3) process scan stations (Processing), (4) merge scan stations and evaluate 

accuracy (Registration), (5) create a cloud point cloud (Create point cloud), and export point 

cloud (Export).  

With TLS data, scans are dumped in SCENE software, handling point clouds creation 

and station pairing. The result of the processing is point clouds as shown in Figure 9. 

 
Figure 9. Point clouds from TLS data. 

The data scanned from the FARO FOCUS3D X130 TLS device was transferred to a 

computer and processed using the SCENE software. The stations were aligned, and the 

accuracy was assessed, and the results were exported in E75 format. The outcome of the 

processing is point clouds as shown in Figures 9a-9c. 

b) Point clouds from UAV images 

UAV image data processed on the software is Agisoft Metashape. Software Agisoft uses 

SfM algorithms include steps: (1) Identify the above features image through using a special 

transformation algorithm multi-scale feature (SIFT); (2) Matching points featured; (3) 

(a) (b)

(c)

(a)

(b) (c)
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Orientation in and out of the image; (4) Creating dense point clouds. The result of the 

processing is point clouds as shown in Figure 10. 

 
Figure 10. Point clouds from UAV data. 

The creation of 3D models and processing of UAV images for high buildings, 

independent buildings, and adjacent villas were conducted using the specialized software 

Agisoft Metashape. This process yielded a dense point cloud for the high building, individual 

building, and adjacent villa, as illustrated in Figures 10a-10c. 

c) Point clouds from terrestrial camera (TC) data 

The terrestrial camera image data processed on the software is Agisoft Metashape. 

Software Agisoft uses SfM algorithms include steps: (1) Identify the above features image 

through using a special transformation algorithm multi-scale feature (SIFT); (2) Matching 

points featured; (3) Orientation in and out of the image; (4) Creating dense point clouds. The 

result of the processing is point clouds as shown in Figure 11. 

 
Figure 11. Point clouds from TC data. 

Processing ground-based images and creating 3D models were conducted using the 

specialized image processing software Agisoft Metashape. The procedure was similar to 

processing UAV images. The result is a point cloud model of the high building, independent 

buildings, and adjacent villas, as shown in Figures 11a-11c. 

3.2. Multi-sensor points cloud data fusion for 3D building models 

a) Integration of point clouds from UAV and TLS for the high building 

The iterative closest point (ICP) algorithm consistently converges monotonically to the 

nearest local minimum of a mean-square distance metric. Empirical evidence indicates that 

the convergence rate is especially fast in the initial iterations. Consequently, with an 

appropriate set of initial rotations and translations for a specific class of objects characterized 

by a certain “shape complexity”, it is possible to globally minimize the mean-square distance 

metric across all six degrees of freedom by evaluating each initial alignment (Figures 12- 

14). 

(a)

(b) (c)

(a) (b) (c)
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Figure 12. High building’s TLS point cloud after noise filtering (a), High building’s UAV point cloud 

after noise filtering (b), High building's UAV and TLS point cloud after precision matching (c). 

b) Integration of point clouds from UAV and TC for the independent building and 

neighboring villa 

 

Figure 13. Independent building’s TC point cloud after noise filtering (a), Independent building’s UAV 

point cloud after noise filtering (b), Independent building’s UAV and TC point cloud after precision 

matching (c). 

 

Figure 14. Neighboring villa’s TC point cloud after noise filtering (a), Neighboring villa’s UAV point 

cloud after noise filtering (b), Neighboring villa’s UAV and TC point cloud after precision matching (c). 

3.3. Accuracy assessment 

The reliability of these datasets was assessed by calculating the root mean square error 

(RMSE) between the coordinates of points on the generated orthophoto and those obtained 

from GPS measurements. A lower RMSE value signifies higher accuracy. The value of 

RMSE is shown in Tables 1-3. 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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Table 1. Results of assessing the accuracy of point clouds fusion from UAVs and TLS of high building. 

No Mx (cm) My (cm) Mp (cm) Mh (cm) 

3 -0.8 -0.8 1.1 0.9 

6 0.4 -3.2 3.3 -1.7 

18 4.4 -0.6 4.4 6.1 

23 3.8 2.0 4.3 4.3 

197 -2.3 -2.9 3.7 -0.9 

203 -6.3 -1.9 6.5 -0.7 

205 -5.9 -5.7 8.2 -2.4 

212 -2.0 4.4 4.8 -19.5 

RMSE 3.8 3.1 5.0 7.5 

The results of assessing the accuracy of point clouds fusion from UAVs and TLS of high 

building are presented in Table 1. The root mean square errors are mΔx = 3.8 cm; mΔy = 3.1 

cm; mΔz = 5.0 cm. With the accuracy of the checkpoints as shown in Tables 1, the 3D model 

can fully achieve high accuracy. 

Table 2. Results of assessing the accuracy of point clouds fusion from UAVs and TC of independent building. 

No Mx (cm) My (cm) Mp (cm) Mh (cm) 

599 -0.36006 -1.08958 1.14753 -2.3491 

107 0.187597 0.561629 0.592132 0.46285 

105 -0.26855 0.225359 0.350582 0.238866 

549 -1.3453 -2.81343 3.118529 -0.76773 

RMSE 0.715331 1.53857 1.69673 1.26283 

Table 3. Results of assessing the accuracy of point clouds fusion from UAVs and TC of neighboring villa. 

No Mx (cm) My (cm) Mp (cm) Mh (cm) 

244 -0.5 1.1 1.2 1.9 

245 -0.7 1.6 1.7 4.0 

246 -0.3 -2.7 2.7 2.8 

267 -0.7 0.3 0.7 -0.2 

269 -1.3 -0.8 1.5 -1.3 

276 -1.8 -1.1 2.1 -0.3 

206 0.4 -0.5 0.7 0.2 

209 2.1 0.4 2.1 -0.9 

211 0.4 -0.4 0.6 3.2 

212 0.9 -1.7 1.9 -1.3 

RMSE 1.4 1.3 1.7 2.1 

The results of assessing the accuracy of point clouds fusion from UAV and TP 

technologies for independent building and adjacent villa rows are presented in Tables 2 and 

3. Based on the coordinate measurements (x, y, z) of the characteristic points on the terrain, 

including door and building corner angles (in Figures 8b, c), directly on the 3D model of the 

point cloud obtained after processing the image capture results, and used for comparison with 

the coordinate measurements (x, y, z) of the corresponding characteristic points measured by 

the non-prism mode of the total station. With the accuracy of the checkpoints as shown in 

Table 2, Table 3, the 3D model can fully achieve accuracy in terms of the horizontal plane 

and height for the 1:500 scale topographic map. 

3.4. Discusion 

From the results of the 3D point clouds and the assessment process of the accuracy of 

the merged point clouds from different technologies, it is evident that this integration process 

has generated complete point clouds, each technology exhibiting its own advantages and 
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disadvantages. Each device allows for the measurement and representation of a portion of 

the object (e.g., independent building). Therefore, a solution combining devices and 

technologies to fully measure and represent an object needs to be proposed, tailored to 

specific cases as demonstrated in this study. For high buildings with more than 10 floors, the 

combination of UAV and TLS technologies proves to be more reasonable and effective. 

For buildings with 10 floors or fewer, combining UAV and terrestrial photogrammetry 

(TP) technologies would be more reasonable and effective. The reason is that terrestrial 

photogrammetry technology is more cost-effective than lidar scanning but provides 

comparable accuracy. However, the limitation of this method is that the data collection 

process outside the field is longer, and the distance from the terrestrial photogrammetry 

image capture point to the object must be calculated reasonably to obtain dense and accurate 

point clouds. 

4. Conclusion 

This study has proposed a comprehensive process for constructing complete 3D models 

for several distinctive construction projects in coastal urban areas. The overall procedure is 

proposed with the integration of geospatial technologies, including UAV aerial photography, 

ground-based photography, and terrestrial LiDAR scanning, to build highly accurate 3D 

models for the research area, which is suitable for the current technological and human 

resource conditions in Vietnam. 

The findings of this study recommend that for high buildings with more than 10 floors, 

the combination of UAV and TLS technology proves to be more reasonable and effective. 

Meanwhile, for buildings with 10 floors or fewer, integrating UAV technology with 

terrestrial photogrammetry (TP) would be more reasonable.  

In our study, we constructed 3D building models using point clouds generated from data 

collected by low-cost DJI Phantom 4 Pro drone equipment and the Sony 7R ground-based 

camera, and the FARO FOCUS3D X130 TLS. The point clouds derived from the Sony and 

FARO FOCUS3D X130 TLS devices were dense and provided high resolution; however, 

they had limitations in coverage, especially for building roofs. On the other hand, the point 

clouds generated by the UAS presented a comprehensive building model, albeit with lower 

resolution. The integration of these technologies is a trend that future research in Vietnam is 

likely to increasingly adopt. 
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Abstract: Baseflow separation is essential for effective water management, drought 

assessment, and groundwater resources protection. Despite its importance, baseflow 

observations are often limited to small-scale studies. To address this limitation, researchers 

have developed various baseflow separation methods. This paper reviews and analyzes 

existing studies which have developed or used the baseflow separation methods. A total of 43 

studies are described, with a detailed review of 26 of them, focused on baseflow separation 

methods. Even if existing methods have already focused on baseflow separation, however, 

various methods produce divergent outcomes, primarily due to the inherent challenges in 

directly observing the flow process associated with each technique. A minority of methods are 

anchored in physical science, particularly noticeable during waning streamflow periods. 

Notably, certain methods dynamically adjust baseflow estimates in response to precipitation 

intensity, an approach that, while intuitive, lacks a physical rationale and introduces 

subjectivity, especially when precipitation events conflate. Filter methods, despite their 

apparent rigor compared to graphical techniques, they suffer from a lack of physical 

underpinning regarding their operational frequency and orientation and are often constrained 

by arbitrary limits to avert baseflow estimates from surpassing total streamflow or descending 

into negative values. While the process-based methodology enhances accuracy by employing 

physical principles to gauge baseflow across both arid intervals and rainy spells, the veracity 

of hydrological models is intimately tied to the data’s availability and integrity. The main 

recommendations resulting from this review are that combining the strengths of different 

baseflow separation methods can lead to more robust results. For example, starting with a 

digital filter method for initial separation and refining it with physical-based approaches. 

Leveraging advancements in computational power and algorithms can help in handling 

complex calculations and iterative processes more efficiently, leading to more accurate 

baseflow estimations.  

Keywords: Baseflow separation; Graph separation; Isotope; Digital filters; Process-based; 

Subsurface flow. 
 

1. Introduction 

In the context of precipitation within a watershed, the flow pathway is established at the 

outlet of the basin, encompassing various water sources. Distinguishing the proportions of 

these different flow components necessitates dividing the flow into surface flow and base 

flow [1–2]. Studying baseflow characteristics is crucial for understanding runoff processes, 

streamflow interactions, and groundwater significant. Researchers also examine baseflow 

recession, spatial and temporal scale, to estimate aquifer parameters from streamflow data 

[3–6]. Specifically, the base flow separation, also known as the hydrological flow component 

or groundwater component, represents a fundamental problem in both technical hydrology 

and applied hydrology. It involves analyzing terrain slopes and calculating convergence, 

which significantly influences the overall hydrological behavior. 
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Generally, base flow constitutes the lower portion of the hydrograph with minimal 

variability. It finds application in industrial and agricultural water supply, water resource 

security, non-point source pollution assessment, water resource evaluation, and flow regime 

modeling [7]. During dry seasons, base flow serves as the primary contributor to river flow, 

maintaining the baseflow regime and playing a crucial role in sustaining ecosystems, 

providing stable water supply for livelihoods, and safeguarding ecological environments. 

Furthermore, the separation of base flow has substantial implications for regional water 

resource planning and protection of stream ecosystems. 

Base flow separation methods are tools used to distinguish between base flow and 

stormflow within a river’s discharge. These methods are crucial for hydrological studies 

because they allow us to understand and quantify the contribution of groundwater to river 

flow, which is vital for managing water resources sustainably. However, our understanding 

of base flow dynamics remains incomplete. The separation of base flow remains a challenge 

in hydrological and ecohydrological research. Scholars both within and beyond national 

borders have shown widespread interest in this topic in recent years, resulting in notable 

advancements and breakthroughs. While various separation methods exist, most of them rely 

on empirical approaches based on flow characteristics. These methods often use graphical 

techniques or mathematical formulas to separate the hydrograph, the graphical representation 

of streamflow over time, into its different components. Achieving a consensus on base flow 

separation is challenging due to the interdisciplinary nature, involving climatology, physical 

geography, hydrogeology, and other scientific domains. The scarcity of experimental data 

further complicates the development of universally accepted methods. Despite extensive 

discussion and development of separation methods, comprehensive analysis comparing these 

available methods is lacking. This gap hinders the ability of hydrologists and water managers 

to select the most appropriate method for their specific context. Our research is the first 

attempt to address this gap by providing a systematic review of base flow separation methods. 

We evaluate their development and assess their application in contemporary hydrological 

studies. By highlighting the strengths and limitations of each method, we offer guidance for 

researchers to choose suitable techniques for their unique environmental and hydrological 

conditions. This work has the potential to significantly influence hydrology, ecology, 

hydrogeology, and water management by providing a clearer understanding of base flow 

dynamics and improving the selection process for separation methods. 

2. Baseflow component 

Baseflow, originating from groundwater aquifers [8–9], or other delayed sources [1, 7, 

10], seeps into the groundwater and contributes to streamflow. It can also be categorized as 

shallow baseflow (from upper subsurface 

layers) and deep baseflow (from deeper 

sources). Deep baseflow provides consistent 

streamflow even during prolonged droughts. 

Total flow combines baseflow and direct 

runoff, with baseflow index (BFI) 

quantifying the groundwater’s contribution. 

Hydrograph separation distinguishes surface 

flow from baseflow. 

Baseflow is the average flow during the 

driest periods over recent years, as estimated 

in hydrological forecasts. Baseflow helps 

prevent excessively prolonged water 

drawdown if it constitutes a significant 

proportion of the total flow. Typically, 
Figure 1. The flow components [11]. 
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baseflow is truncated at a certain threshold level, and subsequent predictions and 

convergence are added back to the baseflow. 

In the field of applied hydrology, the overall flow in rivers and streams is typically 

divided into two primary components. Surface flow refers to the runoff that occurs directly 

over the land surface during rainfall events. It includes water flowing over impermeable 

surfaces, such as roads, rooftops, and paved areas. Baseflow represents the sustained 

contribution of groundwater to streamflow. It is the portion of flow that persists even during 

dry periods when direct precipitation is minimal. Groundwater flow and subsurface flow 

(such as flow through soil layers) contribute to baseflow. However, these components cannot 

be entirely separated due to their interconnected nature. Groundwater flow and subsurface 

flow are not explicitly distinguished because they cannot be entirely separated.  

Therefore, applied hydrologists differentiate between surface flow and baseflow, 

categorizing precipitation into direct runoff, infiltration, and other losses. Baseflow is 

generated, and the infiltration process replenishes soil water storage until saturation occurs. 

Any remaining infiltrated water eventually contributes to baseflow. 

The process of streamflow formation is complex, involving interactions between surface 

water, subsurface flow, and groundwater. Hydrologists use various methods to study and 

quantify these components. Currently, the concept of baseflow in hydrograph separation 

primarily includes both subsurface flow and deep baseflow. This deep baseflow results from 

delayed contributions, such as lateral groundwater flow or other sources.  

Concise summary of the characteristic features of baseflow based on research papers [9, 

12, 13] as follow: 

1. Before a runoff event begins, low flow primarily consists of baseflow. 

2. Following the rising limb, the baseflow persists for some time. 

3. Baseflow reaches its peak after the total runoff reaches peak as the sub-surface storage 

and routing effect. 

4. Baseflow recession typically follow an exponential decay function. 

5. The baseflow rejoin the total flow as quickflow ceases. 

3. Materials and methods 

An analytical synthesis of forty-three scholarly inquiries dedicated to the formulation or 

application of baseflow separation was conducted. The term “baseflow” encompasses a 

spectrum of baseflow reseach. 

3.1. Search procedure 

To conduct a comprehensive search for literature on baseflow separation, the following 

strategies were used:  

1. Terms and their combinations can be used: “Baseflow separation”; “Hydrograph 

separation”; “hydrograph analysis”; “Groundwater-surface water interaction”; “Streamflow 

components”; “Hydrological modeling and baseflow”; “Aquifer recharge estimation”. 

Boolean operators like “AND” and “OR” can be used to combine these terms for more 

refined searches, such as “baseflow separation AND hydrological modeling” or 

“groundwater-surface water interaction OR aquifer recharge”. These criteria and search 

terms will help ensure that the review is thorough, up-to-date, and relevant to the field of 

hydrology, particularly concerning the baseflow separation methods.  

2. The selected data sources: Web of Science, Scopus, and Google Scholar combine 

rigor, breadth, and accessibility, ensuring a comprehensive review of baseflow separation 

methods. Researchers can confidently rely on these platforms to inform their investigations 

and advance hydrological science. 
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3. Beyond traditional databases, exploring institutional repositories, government 

reports, and technical bulletins can yield valuable insights. These sources often contain 

unpublished data and practical applications. 

4. Studies published within a period from 1980 until now, to ensure the review captures 

the traditional as well as recent advancements in baseflow separation methods. Peer-reviewed 

articles, conference proceedings, and scientific reports to ensure the credibility and scientific 

validity of the information. Preference for articles published in journals with a high impact 

factor or a specific focus on hydrology and water resources. Studies that specifically address 

baseflow separation methods, including theoretical development, empirical studies, and 

application-based research. Papers that contribute to understanding the mechanisms of 

baseflow, its quantification, and the impact of different separation techniques on hydrological 

modeling. 

3.2. Selection of studies and analytical criteria 

Researchers initiate the selection process by systematically reviewing the titles and 

abstracts of relevant articles retrieved from databases. Articles that align with the study’s 

focus on baseflow separation methods are retained for further evaluation. 

The research conducted a thorough analysis by carefully selecting a subset of studies that 

significantly differed from others due to their unique characteristics, methodologies, or 

findings. Specifically, we focused on studies that proposed or employed techniques for 

baseline separation. This refined set consists of 26 chosen studies. In Section 4, we explore 

these 26 studies in detail. 

4. Baseflow separation methods  

Baseline separation methods encompass various techniques, categorizing these methods 

helps organize the diverse approaches, making it easier for researchers to understand and 

apply them, allow practitioners to quickly identify relevant techniques based on specific 

research goals or analytical requirements.  

Efforts to distinguish baseflow from streamflow continuously over time can be grouped 

into four main approaches: (1) graphical, (2) tracer-based, (3) process-based approach, and 

(4) digital filter. Except for geochemical data, most of these methods rely solely on 

streamflow data. They are not universally applicable under all streamflow conditions and 

typically involve only a few parameters with well-defined physical interpretations. 

4.1. Graphical Method 

This hydrological approach involves graphically segmenting streamflow data to 

distinguish baseflow characteristics based on hydrological and geological features of 

different catchments. It assumes that between consecutive and distinct rainfall events, 

baseflow in a basin is equivalent to streamflow. In other words, during non-rainfall periods, 

the streamflow consists primarily of baseflow. To estimate baseflow under these conditions, 

a set of graphical extrapolation rules is applied to streamflow data. The hydrographs (Figure 

2) before applying the separation method were compared with the after one. Or the tracer-

based method has been used to verify the applied methods. It primarily includes the following 

techniques: 

Straight line Method: This method connects flow with straight lines. Hydrologists use 

characteristic inflection points to segment baseflow, especially suitable for delineating 

baseflow and estimating groundwater resources in closed mountainous catchments. The 

segmentation is based on monthly average flow values, with a minimum flow threshold 

serving as the reference point. Below this threshold, the flow represents annual baseflow. In 

this approach, a diagonal line connects the flood peak and the inflection point of the recession 

limb in the daily streamflow hydrograph (Figure 3). The portion below this line corresponds 
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to baseflow. The vadose zone conditions play a crucial role: When the vadose zone is thick 

and intense rainfall occurs within a short period, preventing groundwater recharge, baseflow 

can be segmented using a horizontal line on the flow recession curve. Conversely, when the 

vadose zone is thin, and groundwater recharge increases after rain, an oblique line can be 

used to separate baseflow. 

For long-term baseflow segmentation, hydrologists often choose representative years 

from streamflow records. They create average daily flow duration curves for each year and 

use maximum monthly flows during the dry season (typically over a 3-month period). The 

small value used as a reference for segmenting the base flow is determined through the cross-

sectional method. This method involves identifying the peak discharge point and the 

inflection point (also known as the branching point) along the river. The process connects 

these two points with a straight line. For high-flow seasons and multi-stage flood events, it 

is necessary to divide the river into segments below the diagonal line, representing the base 

flow during the flood season, which supplements the flow during the dry season. In general, 

the peak elevation of the flood peak is more distinct and easier to determine, while the 

inflection point of the recession segment requires using a pre-established comprehensive low-

flow point for assessment. The comprehensive recession curve is constructed by extracting 

and plotting a set of recession curves that exclude the influence of rainfall on the river flow. 

These curves are horizontally shifted 

to align the tails of each recession 

segment. The outer envelope of this 

set of recession curves represents the 

comprehensive recession curve. 

The construction of a 

comprehensive recession curve is a 

complex task, and manual drawing 

calculations are time-consuming and 

inefficient. To improve computational 

speed and meet the accuracy 

requirements for planning and 

engineering design, many scholars 

turn to computer-based methods. 

Fixed based method: During a flood, the river has extra water, and this can seep into the 

ground, adding more water to the groundwater. After the flood, as the floodwater goes down, 

the baseflow also goes down because there is less water coming from the groundwater.  Even 

after the flood, the groundwater can continue to feed the river, which increases the baseflow 

again. The inflection point is a spot in this process where things change direction - like when 

the base flow starts to increase after the flood. Where this point is located depends on how 

the river and the groundwater affect each other (Figure 3). The method described uses a time 

interval, called N, to measure how long it takes for the river to go from full flood back to 

normal [11].  

Tracing the flow: Starting from when the floodwater has gone down, looking back in 

time to find where the water level started dropping quickly. 

Connecting points: draw a line from this point back to a point on the graph that’s N time 

units before the peak of the flood. 

N = A0.2       (1) 

where A represents the catchment area; N denotes the direct runoff time. The typical 

time interval falls within the range of 3 to 11 days.  

Variable Slope Method: Starting from the beginning of the surface flow, we extend the 

flow path forward as described above. Conversely, from the end point of the surface flow, 

Figure 2. Components of discharge hydrograph [11]. 
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we extend the base flow path 

backward until it intersects a 

vertical line passing through the 

inflection point on the downstream 

water branch. Finally, we connect 

these intersection points with 

straight segments (Figure 3). 

The graphical methods, 

exemplified by the work of the 

Institute of Hydrology [14] and 

Sloto and Crouse [15], use specific 

criteria to distinguish baseflow from 

surface runoff based on streamflow 

hydrograph analysis. By visually 

identifying recession limbs and inflection points, graphical methods provide insights into 

baseflow behavior. However, different graphical rules can lead to significantly different 

baseflow estimates using the same streamflow data. Some rules produce linearly increasing 

baseflow estimates during individual rainfall events, regardless of variations in rainfall and 

streamflow. However, these estimates may not be physically realistic. While the graphical 

approach is based on some physical reasoning, it is not always well-founded physically. One 

limitation is that it can become problematic when two or more rainfall events overlap [16]. 

Consequently, it is not particularly useful for baseflow separation over long periods of time.  

4.2. Process-based approach  

This method is also known as analytical approach, which based on fundamental rules 

governing the formation of subsurface flow. This approach solves equation related to storage, 

discharge, and water balance equations for underground reservoirs. It uses models to estimate 

plant water use, soil absorption capacity, and water penetration into underground layers. The 

approach characterizes each component of a river’s base flow by its rate of change, origin, 

and the volume of water infiltrating from the ground. Mathematical models, such as the 

Sherman Unit Hydrograph and Horton Infiltration Equation, are employed to separate base 

flow from total streamflow. The Sherman Unit Hydrograph is instrumental in determining 

the flow process from rainfall-runoff to base flow, while the Horton Infiltration Equation is 

used to solve for base flow [17]. The widespread application of technologies (e.g., Remote 

Sensing, Geographic Information Systems), along with distributed hydrological models (e.g., 

SHE, SWAT, and TOPMODEL), provides effective methods for segmenting base flow 

within hydrological processes [18]. Birtles [19] represents the amount of water that infiltrates 

the ground surface and contributes to groundwater recharge. It includes rainfall, snowmelt, 

and other forms of precipitation that percolate into the soil. Birtles expressed groundwater 

recharge as a function of surface infiltration, curve-fitting parameters, groundwater recharge 

rate. This approach incorporated the subsurface processes to estimate groundwater recharge 

and provide valuable insights into the baseflow dynamics. The analytical approach in 

hydrology, while robust, the accuracy of hydrological models is heavily dependent on the 

availability and quality of data. In many cases, there might be a lack of spatial-temporal data, 

which can limit the effectiveness of the models. The baseflow index (BFI) and visual 

inspection are used to compare different methods.  

4.2. Isotopic hydrograph segmentation method 

This approach involves separating streamflow into surface runoff and baseflow using 

various tracers. The consistency of the separated baseflow was evaluated with isotope-tracer 

Figure 3. The diagram depicts the baseflow separation 

methods [11]. 
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data [20–24]. Regarding isotopic hydrograph segmentation, there are currently three 

internationally recognized approaches: 

1) Time-Based Separation: Divides the flow into event water and pre-event water, also 

referred to as “new water” and “old water”. Event water typically originates from rainfall, 

while pre-event water is stored prior to precipitation. 

2) Mechanism-Based Separation: Classifies flow into Hortonian overland flow, variable-

source slope flow, saturation-excess flow, interflow, and baseflow. These mechanisms 

account for changes in source conditions or varying slopes. 

3) Geographical Separation: Based on spatial locations before water enters a stream, 

considering whether it is stored in the vadose zone or saturated zone. However, studies often 

do not explore the spatiotemporal distribution of isotopic abundance, and the flow pathway 

is divided into surface runoff and subsurface flow. 

In reality, the isotopic composition of environmental water is influenced by factors such 

as precipitation amount, temperature, topography, and other conditions, with a wide range of 

variability. Additionally, the 18O isotopic signature in groundwater flow within a catchment 

exhibits significant variations during rainfall events, particularly in arid conditions. Although 

the spatial and temporal variations are small, neglecting the time-dependent changes in 

isotopic composition of precipitation would lead to serious errors in hydrograph 

segmentation. Researchers [25, 26] have utilized isotopes (including 18O) in precipitation and 

river flow to delineate hydrological processes. They propose that the influence of subsurface 

flow cannot be overlooked in the flow pathway. Notably, the dominant input for observed 

dissolved aluminum concentrations can be attributed to subsurface flow [27–28]. 

The study [29] employed monitoring devices from three water sources to segment 

stormflow, revealing that the flow in the vadose zone significantly contributes to the 

stormflow component within the catchment. 

Gonzales et al. [30] meticulously evaluated various baseflow estimation techniques 

within a lowland region in the Netherlands. Their investigation encompassed both tracer-

based and non-tracer-based methods, shedding light on the intricate dynamics of 

groundwater-surface water interactions. The tracer approach revealed responsiveness of 

groundwater to rainfall events in the study area. During flood events, surface water 

predominantly contributed to the measured discharge. The rating curve method utilizes 

empirical relationships between streamflow and water stage (discharge rating curves). It 

provides reliable estimates of baseflow. Eckhardt’s [2] approach employs digital filters to 

separate baseflow from total streamflow. It also yielded robust baseflow values. In summary, 

their comprehensive analysis underscores the importance of both tracer-based insights and 

sophisticated estimation techniques in understanding baseflow dynamics. However, these 

approaches are always labor-intensive, require extensive data and sampling, and cannot be 

applied to past events due to the absence of necessary chemical data [30]. Chemical reactions 

during the mixing of components, tracer measurements, and elevation effects on the isotopic 

composition introduce uncertainties in tracer-based methods. These uncertainties can lead to 

less reliable baseflow estimation results.  

4.3. Digital Filter Approach  

To simplify the process of separation baseflow, various time series analysis methods 

have been proposed. These methods primarily include the digital filtering method, smooth 

minimal method, and time step method. The baseflow process line obtained using digital 

filter methods was compared with that obtained using isotope-tracer data to evaluate the 

performance of the applied method. 

4.3.1. Master recession curves (MRC) 

The MRC method is a valuable tool for baseflow separation. It involves analyzing 

recession curves, which provide insights into hydrogeological processes related to 
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groundwater inflow and outflow. To construct the MRC, individual recession curves are 

alighned horizontally and cumulatively superimposed until the MRC includes most of the tail 

ends of recession curves. Researchers directly check the master recession curve to understand 

recession characteristics [32]. 

 
t

t 0B B k=       (2) 

( ) t

t 0B B c k c= − +      (3) 

The exponential form (Equation (2)) is commonly used to fit the master recession. It 

provides a versatile way to model various streamflow behaviors. Equation (1) is an alternative 

form, but it has limitations in capturing the full range of streamflow variations. 

The exponential form allows for a more flexible representation of baseflow dynamics. 

When fitting the master recession, it is preferable to use an extensive historical streamflow 

dataset rather than single events. Baseflow is a slow-moving process, and analyzing long-

term data provides a more accurate representation of its behavior. To fit the master recession, 

hydrologists often perform initiating the analysis from the most current data points. This 

approach ensures that the most up-to-date information is considered when estimating 

baseflow. Hydrologists often visually fit the master recession curve to the streamflow data. 

This involves adjusting the parameters (such as (k) and (c)) until the fitted curve aligns well 

with the observed streamflow recession. 

Duncan [32] demonstrate an effective method for baseflow separation, enhances our 

understanding of baseflow dynamics by accounting for variations across different sites. 

Typically, low flow preceding a hydrological event primarily consists of baseflow. The peak 

value occurs after the peak of total runoff. As quickflow (surface runoff) ceases, baseflow 

rejoins the total hydrograph. The baseflow recession follows an exponential function. During 

the rising limb (when discharge is increasing), modeled baseflow doesnot continue to 

decrease. Typically, one might expect all components of flow to increase as overall flow 

increases. However, it’s essential to note that baseflow separation methods may not 

consistently preserve this feature. 

The MRC approach comprises a single backward pass through the observed total flow 

data to fit an exponential master baseflow recession curve to smooth the connection between 

segments of the master recession. An additional constraint pro-hibiting negative quickflow, 

implied but not always stated in previous descriptions, must be strictly observed for correct 

operation of the smoothing algorithms.  

4.3.2. Nathan and McMahon’s digital filtering method 

The digital filtering technique was first applied for baseflow segmentation in 1990 [11]. 

Over recent years, this method has become the most widely used approach for baseflow 

segmentation worldwide. Its popularity stems from its ability to capture the rapid response 

of direct runoff processes in river basins. By combining characteristics of high-frequency 

signals (representing surface flow) and low-frequency signals (representing baseflow), the 

method effectively dissects the flow regime [2, 31]: 

1. Separate the flow process into: direct flow and baseflow using digital filters. 

2. The baseflow division equation [3] is as follows: 

- Surface flow at time step i: 

 ( ) ( ) ( ) ( )d d

1
Q i Q i 1 Q i Q i 1

2

+
=  − + − −     (4) 

- Baseflow at time step i: 

 ( ) ( ) ( )b dQ i Q i Q i= −                            (5) 

where Qd(i); Qd(i-1) represent the filtered surface flow at time steps i and i-1; Q(i); Q(i-

1) correspond to the total flow at time steps i and i-1; Qb(i) represents the baseflow. 
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The filter coefficient 𝛼 is typically recommended to be 0.925 for daily discharge has 

been recommended [9, 11]. 

4.3.3. Chapman’s modified equations for baseflow separation 

Chapman [18] introduced modifications to Equation 12 as follows: 

1. Direct Flow Component (Qd): 

  ( ) ( ) ( ) ( )d d

3 1 2
Q i Q i 1 Q i Q i 1

3 3

−
= − + − −  − −

    (6)   

2. Baseflow Component (Qb): 

Chapman and Maxwell [18] suggest that during a specific time interval, the baseflow 

can be expressed as weighted average of the surface flow at the current and the previous time 

step: 

( ) ( ) ( ) ( )b b dQ i kQ i 1 1 k Q i= − + −     (7) 

where k represents the recession coefficient, typically set to 0.95. Q(i) = Qb(i) + Qd(i), 
we can eliminate Qd(i) 

 ( ) ( ) ( )b b

k 1 k
Q i Q i 1 Q i

2 k 2 k

−
= − +

− −
                                      (8) 

3. Practical Application: 

Researchers have compared various baseflow estimation techniques and found that 

Chapman and Maxwell’s proposed approach could be optimal in certain contexts [33]. The 

baseflow coefficients obtained using this method exhibit minor variability, and their 

Baseflow Index (BFI) remains relatively stable, within the range of 0.4 to 0.5. In practice, 

Equations 3 and 4 are commonly used as filtering equations: 

 ( )t t 1 t t 1

1
q q Q Q

2
− −=  + −                      (9) 

t t tb Q q= −                            (10) 

where qt and qt−1 represent the filtered surface flow at t and t-1; Q denotes the total 

flow; β is the filter parameter affecting baseflow attenuation. Empirical studies suggest that 

a value around 0.9 yields baseflow estimates that closely align with actual observations. In 

other words, this value helps us capture the real behavior of groundwater contributions to 

streamflow. Typically, values of 0.9, 0.925, and 0.95 are used for baseflow separation, with 

the most suitable parameters determined based on specific watershed characteristics. Factors 

like geology, vegetation, and climate influence the optimal value. 

Arnold and Allen [34] conducted a rigorous study across six representative river basins 

in the western and eastern United States. They verified a method (likely the one using β) and 

found that this method consistently produced similar results when applied multiple times, 

easy operation, few parameters which simplify the process, and fast implementation.  

Mau and Winter [35] compared the results of the method (likely involving β) with a 

graphic segmentation approach. The results showed good agreement between the two 

methods, reinforcing the reliability of the method using β. 

4.3.4. Eckhardt Filter method 

Eckhardt [2] proposed the Eckhardt filter method, and its equation is as follows: 

 
( ) ( )max t 1 max t

1

max

1 BFI b 1 BFI Q
b

1 BFI

−−  + −
=

−
                          (11) 

where α  represents the water retention constant, which can be determined through 

analysis of recession flow; BFImax represents the maximum proportion of streamflow that 

comes from baseflow. Eckhardt [2] applied this method to study 65 randomly selected river 
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basins in the United States. They suggested that the BFImax values for perennial rivers are 

0.8, rivers have flow variations throughout the year (for seasonal rivers), the BFImax value is 

0.5, and the perennial rivers flow through hard rock formations, the BFImax value for these 

rivers is 0.25. 

The Eckhardt filter method is a powerful tool for baseflow separation. It operates by 

adjusting the Baseflow Index (BFI) values. When compared to alternative methods, the 

Eckhardt filter exhibits gradual changes in BFI, resulting in a smoother baseflow hydrograph. 

Under typical hydrological conditions, this filtering technique yields a more stable 

representation of baseflow. However, intriguingly, certain regions specifically semi-arid and 

humid areas deviate from this norm, especially where low-flow coefficients are small and 

intense rainfall occurs over short periods, river basins exhibit sharp and uneven hydrographs. 

These conditions are primarily due to excessive infiltration during high-flow periods and 

lower groundwater flow coefficients.  

Xie et al. [36] conducted a study on 1,815 river basins across the United States to 

measure the baseflow. They used nine different methods that involve visual analysis and five 

that use computer algorithms to estimate these values. They applied a strict rule where only 

the water flow observed during dry periods was considered true baseflow. After analyzing 

the data, they determined that the method developed by Eckhardt was the most effective for 

predicting baseflow throughout the mainland United States, based on their extensive testing 

across all the river basins. 

4.3.5. Minimum smoothing method 

This method divides an entire continuous streamflow sequence into non-overlapping 

blocks with a fixed width of 5 days. Within each block, the minimum value is determined, 

using a specified threshold. The rule involves identifying the minimum values to form 

inflection points and connecting these inflection points to obtain the baseflow hydrograph. 

This method is straightforward, easy to implement, and has been applied in various countries 

and regions.  

Sun et al. [37] separated the baseflow from the total streamflow in the upper part of the 

Yitong River. This technique aims to estimate the maximum baseflow index (BFImax) 

accurately. The SMT aligns well with isotope-tracer data and exhibits stability and reliability 

in the Second Songhua River. Compared to other methods, it is believed that the smooth 

minimum method provides the smallest baseflow index values. However, there are certain 

challenges when applying this method for baseflow segmentation: 

The lower envelope of the total streamflow, including some multi-segmented streamflow 

paths, is related to basin precipitation. The smooth minimum method includes partially 

unrecessed groundwater flow from previous floods, leading to increased groundwater flow 

and inconsistency with actual conditions. The baseflow hydrograph, defined as a smooth 

curve without inflection points, may not fully reflect the catchment’s flow dynamics. 

4.3.6. The time-step method 

It also known as the HYSEP method, is a computer program used for streamflow 

segmentation. It incorporates three different segmentation techniques: the fixed interval (FI), 

the sliding interval (SI), and the local minimum (LM) [16]. All three methods utilize 

empirical formulas to calculate direct runoff time: N = A0.2  

where A represents the catchment area; N denotes the direct runoff time. The typical 

time interval falls within the range of 3 to 11 days. The nearest odd number to 2N is chosen 

as the time interval, and baseflow calculations are performed based on this interval. 

1. Fixed Interval (FI): 

For the time frame being studied, the smallest amount of water that was recorded flowing 

in the river each day is used to represent the baseflow. 
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The endpoint of this calculation is then used as the starting point for the next iteration. 

2. Sliding Interval (SI): 

For a given day, looking at a time range that extends (2N-1)/2 days before and after that 

day. Within this time frame, we calculate the minimum flow rate. This minimum value is 

then used for analysis or comparison within the selected interval. 

This value represents the minimum flow contributed by groundwater, baseflow, and a 

similar approach is used to calculate baseflow for the subsequent day. 

3. Local Minimum (LM): 

First, calculate the center within adjacent time steps. 

The baseflow value at the center point, as well as the baseflow within the time range 

outside the center point, are determined using linear interpolation. 

The method for calculating baseflow at the center point in the time step is as follows: 

Choose the time interval of (2N-1)/2 days before and after a minimum value day. 

Assign this value as the baseflow for that day. 

Then use the endpoint of this calculation as the starting point for the next iteration to 

compute baseflow at the center point of the subsequent time step. 

Partington et al. [38] explored four ways to estimate baseflow. They considered methods 

like HYSEP [16], PART [39], BFLOW [32], and Hydro-GeoSphere (HGS) [40], HGS [40] 

ombined with a hydraulic mixing-cell approach, provided synthetic baseflow values for a V-

shaped catchment. Li et al. [41] ested various recursive digital filters using synthetic data 

from HGS. The Lyne and Hollick filter performed well, closely matching HGS synthetic 

baseflow across diverse catchment conditions. Optimal filter parameters varied based on the 

specific hydrological context [2, 11, 17, 18, 42]. Su et al. [43] investigated the Eckhardt filter 

method. After calibrating it using hydrological signatures, the filter showed improved 

performance. 

Table 1. Baseflow separation methods. 

Gourped 

approaches 
Advantages Disadvantages 

Graphical 

approaches 

Based on physical reasoning 

 

Problematic when multiple rainfall events overlap 

Not useful for baseflow separation over long periods.  

Process-

based 

Based on fundamental rules 

governing subsurface flow 

Provide valuable insights into 

baseflow dynamics 

Heavily dependent on the availability and quality of data 

Complexity involved 

Tracer-based 

Shed light on intricate 

groundwater-surface water 

interactions. 

Revealed groundwater 

responsiveness to rainfall events 

Provides reliable baseflow 

estimates 

Labor-intensive, require extensive data and sampling 

Cannot be applied to past events due to the absence of 

necessary chemical data 

Uncertaintíe due to tracer measurements, and isotopic 

composition  

Digital Filter 
Yielded robust baseflow values 

 

Lack a physical basis for application frequency and 

direction 

Limited by arbitrary constraints to prevent exceeding total 

streamflow or becoming negative. 

Focus on low-frequency streamflow, which is usually 

associated with baseflow.  

This might also contain quick surface runoff, especially 

after heavy rains 

4. Conclusion 

The study offers a in-depth perspective on baseflow separation methods, providing 

insights that are both practical and scientifically significant (Table 1). When comparing 

different methods for estimating baseflow from streamflow data, it’s clear that only a few 
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methods are grounded in physical science, particularly during periods when the streamflow 

is decreasing. Some methods estimate baseflow during rain events in a way that changes with 

the amount of rain, which seems logical but isn’t based on physical principles. These methods 

can be very subjective, especially when rain events overlap.  

The tracer-based technique provides an objective understanding of flow behavior and 

has gained recognition for its ability to study flow mechanisms, model moisture movement 

in soil, analyze water source components within a river basin, and monitor flow pathways. 

Filter methods are more reliable in these cases and seem more rigorous than graphical 

methods. However, they too lack a physical basis for their application frequency and 

direction. They are also limited by arbitrary constraints to prevent baseflow estimates from 

exceeding total streamflow or becoming negative. Ideally, filters should work without these 

limits. Filters are designed to separate the steady baseflow from the total streamflow (Figure 

1). These filters focus on the low-frequency part of the streamflow, which changes slowly 

and is usually associated with baseflow. However, some experts argue that this slow-

changing part might also contain quick surface runoff, especially after heavy rains. This 

means that the filters might not be perfectly accurate.  

The process-based approach improve this by using physical principles to estimate 

baseflow during both dry periods and when it’s raining. Process-based method is more 

complex because it uses many different factors and an iterative process, which means it 

repeats steps to get closer to the correct estimate. But this complexity can also make it harder 

to get consistent results, especially when the streamflow changes rapidly, and the accuracy 

of hydrological models is heavily dependent on the availability and quality of data.  

Various baseflow segmentation methods are known to produce divergent outcomes, 

primarily due to the inherent challenges in directly observing the flow process associated 

with each technique. Among various baseflow separation approaches, digital filter methods 

have gained popularity due to their simplicity and effectiveness, use numerical algorithms to 

partition streamflow into its constituent components. However, selecting appropriate filter 

parameters is crucial for accurate results.  

To enhance the robustness of baseflow analysis, it is advantageous to combine different 

segmentation methods. This can be achieved by integrating the strengths of individual 

techniques to compensate for their respective limitations. For instance, one could apply a 

digital filter method to obtain a preliminary separation of baseflow and then refine the results 

using a more physically-based approach, such as recession curve analysis. This hybrid 

strategy leverages the simplicity and computational efficiency of digital filters while 

incorporating the detailed insights provided by physical methods, especially during varying 

flow regimes. The combined approach not only ensures consistency across different flow 

conditions but also tailors the analysis to the unique hydrological characteristics of the study 

area. 
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Abstract:  Reconstruction of streamflow in transnational river basins is of great significance 

in water resource planning and management in Vietnam. Among the ten biggest river basins 

(each having a total basin area of greater than 10,000 km2) there are eight transnational river 

basins, and Vietnam is located downstream in the five basins of those eight. These include 

the Mekong River with 92% of the area belonging to foreign countries; the Red River with 

51% located abroad, mainly China; the Dong Nai River with 17% belonging to Cambodia; 

the Ma River with nearly 38% belongs to Laos and the Ca River with 35% belongs to Laos. 

This study uses numerical modeling methods to reconstruct the streamflow from China to 

Vietnam in the Da River basin at Muong Te hydrological station. The VIC model was 

applied with daily climate data (rain, wind speed, maximum and minimum temperature) 

from 1981 to 2020 to reconstruct streamflow at Muong Te station in the Da River basin. 

Combining the VIC Model and the Shuffled Complex Evolution method to determine the 

most suitable set of parameters for the Da River basin creates a powerful tool for studying 

hydrological processes on river basins. Research results also show that the streamflow 

reconstruction for the period before 2008 when the upstream reservoirs were not yet in 

operation is highly reliable. 

Keywords: VIC; Da river; Muong Te; SCE. 
 

1. Introduction 

Streamflow reconstruction is an important issue in hydrology, especially in data-

deficient river basins that lack/have no gauging stations. Data-deficient basins,  data-scarce 

basins and basins without gauging stations are basins with limited meteorological and 

hydrological data [1]. Therefore, studies on water resources and flood and drought forecasts 

in such basins often have low reliability. The International Association of Hydrological 

Sciences (IAHS) in the years 2003-2012 initiated research related to hydrological forecasting 

for basins lacking gauging stations (prediction in ungauged basins - PUB) considering 

uncertain factors [1]. Most of the studies related to PUB were carried out after 2003. An 

example of previous studies [2], performed estimation of hydrological model parameters 

based on classification basins according to similarities in basin characteristics and 

geomorphological topography, instead of traditionally used methods, such as regression 

equations. 

mailto:nguyentiengiang@hus.edu.vn
mailto:bichdam555@gmail.com
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The small number of hydrological gauging stations creates challenges related to 

forecasting inaccuracy of streamflows. Regardless of the forecasting method used, 

streamflow forecast results need to be verified against observed/gauge data [3]. Therefore, to 

be able to identify accurate forecast results for locations without gauging stations, gauge data 

at neighboring locations are often required to compare with simulation results [4]. One of the 

commonly used approaches recently is to use data in many neighboring basins combined 

with regionalization methods to forecast runoff for data-deficient basins [5]. The 

effectiveness of this approach has been demonstrated when applying streamflow forecasts to 

basins lacking gauge data using large datasets such as CAMELS-US with 671 basins in the 

United States [6] or CAMELS GB with 671 catchments in the UK [7]. Regionalization 

methods can be used to interpolate the hydrological characteristics of data-deficient 

catchments based on the characteristics (geology, geomorphology, spatial meteorology) of 

neighboring catchments [8]. 

The VIC model [8–10] is a macroscale hydrological model that addresses the full energy 

and water balance, originally developed by Xu Liang at the University of Washington. VIC 

is a research model and in many different forms, it has been applied to most major river 

basins in the world, as well as globally. This is a grid-based semi-distributed hydrological 

model that quantifies the main hydrometeorological processes occurring at the atmospheric 

land surface. Typically, mesh resolution ranges from 1/8 to 2 degrees. The VIC model was 

first described as a single soil layer model [11]. The single-layer soil model requires three 

parameters: permeability parameter, evaporation parameter, and baseflow recession 

coefficient. In 1994, Liang et al generalized the two-layer VIC model (VIC-2L) to include 

multiple spatially varying soil and vegetation layers and evaporation within a single grid cell. 

In VIC-2L, infiltration, drainage from the topsoil to the subsoil, and surface and subsurface 

runoff are calculated for each vegetation cover (in addition to the statistical parameter of 

heterogeneity) of infiltration and flow processes in a vegetated cover existing in the original 

VIC model). VIC-2L was later modified to allow moisture diffusion between soil layers, and 

there was an additional 10cm thin layer of soil on top of the previous topsoil layer. In this 

way, the three-layer VIC model (VIC-3L) [9, 11–14] was created and the VIC-3L frame has 

been used since then. The model now allows for more than three soil layers if desired. Such 

a model was used in this study. 

The issue of monitoring cross-border water resources has become increasingly 

challenging in recent years, as water resources become scarcer due to the need to exploit 

them to serve socio-economic goals within each country sharing the river basin. The Da river 

plays a vital role in Vietnam's socio-economic development and water-food-energy security 

nexus. It houses three of the largest reservoirs in the country - Lai Chau, Son La, and Hoa 

Binh - which provide ample water supply for the Red River delta and Hanoi, the capital and 

the economic and political center of Vietnam. Monitoring streamflow from abroad into 

Vietnam within the Da River basin faces several difficulties due to the current flow data 

measurement practice that relies primarily on technology dating back to the late 20th century. 

Additionally, the manual methods used for data collection require significant human 

resources, infrastructure, and investment in monitoring equipment. The situation is further 

compounded at the Da river’s border with China, where monitoring and measuring 

streamflow is even more challenging, with most of the streamflow remaining unmeasured. 

While Ka Lang water resources station, which was built in 2016, uses automatic technology 

to measure flow, it is currently inactive. The Keng Mo station has been measuring and 

collecting flow data since 2020, but as it is a station built and managed by EVN, it presents 

difficulties in terms of accessibility, and the observed dataserie is not long enough. Moreover, 

there is currently no discharge gauging station on the mainstream of the Da river located 

upstream of the Lai Chau hydropower plant to monitor streamflow timeseries of sufficient 

length. Therefore, within the scope of this article, a modeling method has been applied to 
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restore the streamflow at the Muong Te hydrological station, result of restore the streamflow 

supports effective management of the amount of water flowing into Vietnam from the up 

basin of the Da River through the country border. 

2. Materials and Methods 

2.1. Description of the study area 

The Da River originates in Yunnan, one of China’s southern provinces, and flows into 

the Red River delta in Vietnam, where it merges with two other tributaries, the Lo River and 

the Thao River (Figure 1). The Red River then continues to Hanoi, the capital of Vietnam, 

Figure 1. Map of the study area. 

Figure 2. Research method schematic. 
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before flowing southeast to the East Sea. Numerous human interventions occur in and around 

this river without proper assessment or monitoring. Changes in land use as well as reservoir 

construction have a significant impact on this catchment area. The Da River generates 

substantial hydroelectric power, with dozens of dams in Yunnan and three large hydroelectric 

plants in Vietnam (EVN). However, the operating rules of the upstream dams are not publicly 

available. While there are hydrological and meteorological gauging stations in both country 

parts of the Da River catchment, little data from these stations is shared. A hydrological 

model has been used in this study to reconstruct the streamflow time series in the upstream 

part of the basin in Vietnam’s territory. 

2.2. VIC model 

2.2.1. VIC model overview 

Before intervening in a water system, it is crucial to model the system to evaluate 

potential impacts. This process, which involves modeling a catchment’s physical 

characteristics and its rainfall-runoff processes, is referred to as hydrological modeling [15]. 

In this study, the VIC model will be used to simulate the Da River basin for several reasons: 

(1) The VIC model is fully distributed and physically based, taking into account the 

spatial variability of inputs in great detail. 

 

Figure 3. (a) Schematic overview of the VIC-model framework [16]; (b) Schematic overview of 

the mechanics behind the rainfall-runoff model. 

(https://www.hydro.washington.edu/Lettenmaier/Models/VIC/). 

(2) The VIC model is a hydrological land surface model, which means it employs 

quantitative methods to simulate the exchange of water, energy, and momentum fluxes 

between the land surface and the atmosphere. 

(3) Human interventions, such as reservoirs and changes in land use and land cover, can 

also be simulated. 

The VIC hydrological model is typically implemented using a framework consisting of 

three components, as illustrated in Figure 3a [17]. The rainfall-runoff model [18] serves as 

the foundation for simulating interactions between the atmosphere, land, and water flow. The 

mechanics of this part of the model are shown in Figure 3b. It utilizes climate forcings and 

the area's physical properties as inputs, producing gridded baseflow and runoff as outputs. 

The routing model [19] is performed separately and accumulates the gridded baseflow and 

runoff to determine streamflow at a selected outlet. This study utilizes the SCE-UA 

(a) (b)
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optimization algorithm instead of the NSGA multi-objective genetic algorithm for model 

calibration as depicted in Figure 3a [20]. 

 

Figure 4. Set up VIC model for Da River. 

2.2.2. Set up of the VIC model for the Da River basin 

Simulation domain: The modeled Da River basin is divided into two regions including: 

Region 1 from upstream to the Vietnam - China border to Muong Lay station (Lai Chau 

Province). 

Region 2 is the Nam Mu River basin containing two lakes, Ban Chat and Hoi Quang. 

Simulation grid: The Da River basin is digitized into the VIC model with 3 soil layers, 

with a resolution of 0.05 degrees, the entire study area is divided into 16,146 points (78×69), 

including 4,134 simulation points (Figure 4). 

2.3. Data collection  

In this study, land use and land cover maps are employed, along with various vegetation 

properties such as LAI, albedo, and global and regional meteorological forcing time series. 

Additionally, a digital elevation model, flow direction map, flow characteristics, soil map 

with soil properties, and observed streamflow time series are utilized. To provide a clear 

overview of the sources for these datasets, Table 1 lists the datasets used, and a short 

description for each of these is given in the following subsections. 
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Table 1. Overview of the used datasets and their sources. 

Datasets Period Purpose Source 

Station streamflow 

Vietnam 
1981-2020 Discharge time series 

Vietnam Meteorological and 

Hydrological Administration 

Grid precipitation 

Vietnam (VnGP) 
1981-2020 VIC model input 

The Vietnam Gridded 

Precipitation (VnGP) Dataset: 

Construction and Validation 

[18] 

Grid precipitation China 

(CHM) 
1981-2020 VIC model input 

The China Hydro-Meteorology 

dataset (Beijing Normal 

University) [19] 

Grid wind speed and 

min/max temperature 
1981-2020 VIC model input ECMWF - EU [20] 

Digital Elevation Model 

(DEM) 
- Set up the VIC model  ALOS30 [21] 

Soil map & Soil 

properties 
- Set up the VIC model 

FAO - Unesco, “Soil map of 

the world” [22] 

Land Use & Land Cover 

maps 
1992-2020 Set up the VIC model 

Land Cover CCI Product User 

Guide Version 2 [23] 

2.3.1. Meteorological forcing data files 

The VIC model is capable of processing either daily (precipitation, Tmax, Tmin, 

windspeed) or sub-daily meteorological data inputs, or a combination of both. VIC offers the 

flexibility of utilizing different variables and variable combinations as per the user's 

requirements. The global parameter file must contain a comprehensive description of the 

contents and formats of the meteorological data files. 

2.3.2. Soil parameter file 

The soil parameters for the VIC model are provided in a single ASCII file, where each 

row represents a unique grid cell. The fields in the file contain different parameter values for 

each cell. The soil parameter file serves three primary purposes: Firstly, it assigns a unique 

cell ID number to each grid cell, which acts as a database key to link the cell to its parameters 

in other parameter files. Secondly, it defines the soil parameters for each grid cell along with 

the geographic information such as the latitude and longitude of the grid cell center. Lastly, 

it defines the initial soil moisture conditions for use in the absence of an initial state file 

(Figure 5a). 

 

Figure 5. (a) Map of soil properties, (b) Land use and land cover maps. 

(a) (b)
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2.3.3. Vegetation parameters and vegetation library 

The vegetation parameters and vegetation library provide pertinent information 

regarding the number of vegetation types present in each grid cell, their partial coverage, and 

the required vegetation parameters for each vegetation type utilized in the VIC model. This 

information is presented in a columnar format as an ASCII file. Each grid cell is represented 

by a separate row, with each field containing a distinct parameter value. 

2.3.4. Flow Direction 

The flow direction file is a critical component of the routing model used in hydrological 

studies to establish connectivity between individual grid cells generated by the VIC model. 

The flow direction file provides header information to the model that knows the lower left 

latitude and longitude, the number of rows and columns, and grid cell resolution. Each grid 

cell in the file is assigned a number that represents the flow direction in the river and stream 

network. 

 
Figure 6. The flow direction map in the Da River basin. 

3. Results and discussion 

3.1. Calibration and validation of the VIC model 

3.1.1. Calibration of the VIC model 

The determination of six soil parameters (bin, Ds, Dmax, Ws, D2, D3) is a challenging 

task, given their conceptual nature and the lack of observable, physical quantities [24, 25]. 

Figure 7. RMSE index convergence process using the SCE-UA algorithm (unit run-off is mm). 
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To address this issue, a calibration procedure was developed that utilizes an autocalibration 

script and the Shuffled Complex Evolution method, which was chosen for its ability to 

identify global optima with the right algorithmic parameters [26]. The calibration framework 

follows the VIC hydrological model [27], except for the parameter generation algorithm 

shown in Figure 2. The autocalibration script was run using a spatial resolution of 0.05°, 

which was a suitable resolution to mimic the Da River basin. Upon obtaining the optimal 

parameter set, the performance of the model was assessed using key performance indicators, 

specifically the NSE, BIAS, and RMSE. 

The calibration of the VIC hydrological model employed the RMSE objective function 

to optimize six parameters, which were selected based on the RMSE index between observed 

discharge and simulated discharge at Muong Lay station during the years 1981-1995. The 

Shuffled Complex Evolution method was initially set up with 1000 iterations. After 

eliminating local disturbances, the RMSE indexes displayed an evolution of 380 RMSE 

indexes, showing the convergence of the simulated data series approaching the actual 

measured data series asymptotically. The convergence process of the objective function is 

illustrated in Figure 7. The results of the calibration process are provided in Table 2 and 

Figure 8. 

 

Figure 8. Simulated and observed daily discharge at Muong Lay station in the calibration period 1981-1995. 

Table 2. Results of VIC model calibration of NSE, R2, RMSE, BIAS index. 

Hydrology stations NSE R2 RMSE BIAS 

Muong Lay 0.78 0.86 444.3 114.9 

The results of calibrating the VIC model show that the simulated discharge at Muong 

Lay station in the Da River basin is relatively consistent with the actual observed value, the 

reliability according to the NSE index is 0.78, the correlation coefficient is 0.86; the BIAS 

index is 114.9. The results of the adjusted simulation show that the VIC model parameters 

after adjustment are in close agreement with reality, which also means that the parameters 

after adjustment have relatively appropriately reflected the observed discharge from 1981-

1995 in the Da River basin.  

Table 3. VIC model calibration parameters. 

No Parameter After calibration Calibration range 

1 bin 0.3151 0.002 0.495 

2 Ds 0.7065 0.019 0.875 

3 Dsmax 27.1525 2.653 29.983 

4 Ws 0.7170 0.1 0.984 

5 D 2 0.3242 0.3 1.5 

6 D 3 1.4995 0.3 1.5 
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3.1.2. Spatially validation of the VIC model  

Upon completion of the calibration process, it is imperative to verify the stability and 

suitability of the parameter set as outlined in Table 3. This study conducted an independent 

spatial validation at Nam Giang station during the years 1981-1995. The results are shown in 

Figure 9a and Table 4. 

 

Figure 9. Simulated and observed discharge timeseries at: (a) Nam Giang station in the period 1981-

1995; (b) Muong Lay station in the period 1996-2007; (c) Nam Giang station in the period 1996-

2007; (d) Po Lech station in the period 2003-2007. 

Table 4. Spatial independent validation results of  NSE, R2, RMSE, BIAS index. 

Hydrology 

stations 
NSE R2 RMSE BIAS 

Nam Giang 0.74 0.74 136.5 -8.9 

After performing calibration and spatial validation on the VIC model, it was found that 

the simulated streamflow value at the Nam Giang station on the Da River basin is consistent 

with the observed value. The model’s reliability, as determined by the NSE index, is good at 

0.74, while the correlation coefficient is also 0.74. However, the BIAS index is negative at -

8.9.  

Based on the results of spatially independent validation, it has been found that the VIC 

model parameters are in close agreement with reality. This also indicates that the calibration 

parameters reflect the relatively well-observed discharge from 1981 to 1995 in the Da River 

sub-basins. Therefore, the set of parameters mentioned in Table 3 is deemed qualified for 

conducting spatial and temporal independent validation. This will confirm the stability of the 

VIC model parameters for the Da River basin. 

3.2. Spatial and temporal validation of the VIC model  

The study aimed to validate selected model parameters using discharge observations in 

the Da River basin at three stations - Muong Lay, Nam Giang, and Po Lech. The six 

parameters selected for validation are listed in Table 3 for the three stations - Muong Lay, 

Nam Giang (1996-2007), and Po Lech (2003-2007). The results of spatial and temporal 

independent validation are presented in Figure 9b-9d and Table 5. 
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Table 5. Spatial and temporal independent validation results of NSE, R2, RMSE, BIAS index. 

Hydrology 

stations 
NSE R2 RMSE BIAS 

Nam Giang 0.78 0.8 134.6 -8.7 

Muong Lay 0.85 0.86 488.5 33.0 

Po Lech 0.81 0.81 323 8.0 

The VIC model’s spatial and temporal independent validation results indicate that the 

discharge values at certain locations in the Da River basin are consistent with the actual 

observed values. At the Nam Giang station, the NSE index is 0.78, which is a good grade, 

the correlation coefficient is 0.8, and the BIAS index is -8.7. At the Muong Lay station, the 

NSE index is 0.85, which is a good grade, the correlation coefficient is 0.86, and the BIAS 

index is 33.0. At the Po Lech station, the NSE index is 0.81, which is a good grade, the 

correlation coefficient is 0.81, and the BIAS index is 8.0.  

The validation results indicate that the model parameters are consistent with reality, 

which implies that the validated parameters reflect the actual discharge from 1996 to 2007 in 

the Da River basin. Therefore, the parameters in Table 3 are qualified to simulate and 

reconstruct the flow from China to Vietnam on the Da River basin. 

3.3. Streamflow reconstruction at Muong Te hydrological station 

The reconstruction of streamflow data at Muong Te station for the period before and 

after large upstream reservoirs came into operation from 1981 to 2020 was done using the 

VIC model and the set of parameters selected in Table 3. The results of this simulation are 

presented in Figure 10. 

 

Figure 2. Results of streamflow reconstruction at Muong Te station in the period (1981-2020). 

The results of streamflow reconstruction when considering correlation with the observed 

water level at Muong Te Station have a large decline in the period after 2007, Figure 11. For 

the period before 2008, the correlation coefficient between reconstructed streamflow and the 

actual water level observed is 0.78. In the period from 2008 to 2015, the correlation 

coefficient between the streamflow reconstruction and the actual observed water level 

decreased to 0.73. This result shows that the set of parameters in Table 3 is suitable for the 

reconstructed natural flow in the Da River basin. This recovery data plays an important role 

in researching and designing regulation reservoirs in the Da River basin and assessing the 

effects of water regulation reservoirs in Vietnam and China. 
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Figure 3. The correlation coefficient between streamflow reconstruction and actual water level 

observed at Muong Te station in the period before and after 2007. 

3.4. Discussion 

Da River and Red River are important in Vietnam’s water resource security. Thus, there 

have been many studies applying simulation models on Da River and the Red River basins. 

The study [28] used the HEC-HMS model to simulate flow from 2003 to 2019, and 

simulation results were evaluated through 2 gauging stations (Ta Bu and Muong Lay) with 

Nash index ranging from 0.711 to 0.818; Study [29, 30] simulated daily streamflow on the 

Red River from 2005 to 2014, the simulation results were evaluated through 4 hydrological 

stations (Lao Cai, Yen Bai, Son Tay, and Hanoi) with Nash index ranging from 0.113 to 

0.487; Yungang Li and his colleagues simulated the daily flow of the mainstream of the Red 

River on the Chinese side from 1961 to 2012. The simulation results were evaluated with the 

Nash index ranging from 0.85 to 0.89 [31]. In this study, the authors synchronized real 

observed rain data from China and Vietnam as input to the VIC model. To improve the 

simulation quality, the perturbed complex evolutionary algorithm [20, 32] was applied to 

calibrate the model’s parameter set. The daily streamflow simulation results were evaluated 

with the Nash index ranging from 0.74 to 0.85 (Section 3.2), which shows a remarkable 

improvement compared with the previous studies conducted in Vietnam, and almost as good 

as the study conducted in China for the Red River. It is worth noting that Yungang Li and his 

colleagues used the observed meteorological and hydrological data, whereas this study 

utilized only measured discharge. 

4. Conclusion 

The monitoring of the discharge of water from China to Vietnam in the upstream area of 

Da River is challenging due to technological, economic, and natural conditions. As a result, 

discharge data is often incomplete or non-existent, making it difficult to plan and manage 

water resources in the basin. To address this, the VIC land surface hydrological model was 

used to simulate flow in the Da River basin by selecting appropriate parameters and data. 

The VIC model was combined with the Shuffled Complex Evolution method to determine 

the best set of parameters for the basin, creating a powerful tool for studying hydrological 

processes in river basins. 

The research results showed that the streamflow at Muong Te station in the Da River 

basin between 1981 and 2020 was accurately restored using the VIC model. The streamflow 

reconstruction was exceptionally reliable for the period before 2008 when the upstream 

reservoirs were not yet put in operation. However, after 2008, the streamflow of the Da River 

was influenced by the regulation activities of flow-regulating reservoirs in China. Therefore, 

in-depth research is required to reconstruct the streamflow time series during this period by 

considering the hydrological processes in the basin and the regulation of reservoirs. 

(a) (b)



J. Hydro-Meteorol. 2024, 20, 52-65; doi:10.36335/VNJHM.2024(20).52-65                          63 

Author contribution statement: Designed the study conception: K.V.H.; collected data: 

G.N.T., K.V.H.; developed the theoretical research: G.N.T., K.V.H.; processed the data and 

performed the simulations: K.V.H.; analyzed the data: K.V.H.; contributed largely to revising 

the final manuscript: G.N.T., K.V.H., D.T.N.B. 

Acknowledgments: This study is supported by project No. ĐTĐL.CN–06/23 of the 562– 

programme funded by Vietnam Ministry of Science and Technology 

Competing interest statement: The authors declare no conflict of interest. 

References 

1.  Meko, D.M.; Woodhouse, C.A. Application of streamflow reconstruction to water 

resources management. In: Hughes, M.; Swetnam, T.; Diaz, H. (eds) 

Dendroclimatology. Developments in Paleoenvironmental Research, vol 11. 

Springer, Dordrecht. 2011, pp. 231–261. https://doi.org/10.1007/978-1-4020-5725-

0_8. 

2. Ibrahim, A.B.; Cordery, I.A.N. Estimation of recharge and runoff volumes from 

ungauged catchments in eastern Australia. Hydrol. Sci. J. 1995, 40(4), 499–515. 

https://doi.org/10.1080/02626669509491435. 

3. Moradkhani, H.; Sorooshian, S. General review of rainfall-runoff modeling: model 

calibration, data assimilation, and uncertainty analysis. Hydrol. Model. Water Cycle 

2008, 1–24. https://doi.org/10.1007/978-3-540-77843-1_1. 

4. Samuel, R.D.; Tenenbaum, G. How do athletes perceive and respond to change-

events: An exploratory measurement tool. Psychol. Sport Exerc. 2011, 12(4), 392–

406. https://doi.org/10.1016/j.psychsport.2011.03.002. 

5. Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. 

Towards learning universal, regional, and local hydrological behaviors via machine 

learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23(12), 

5089–5110. https://doi.org/10.5194/hess-23-5089-2019. 

6. Addor, N.; Newman, A.J.; Mizukami, N.; Clark, M.P. The CAMELS data set: 

catchment attributes and meteorology for large-sample studies. Hydrol. Earth Syst. 

Sci. 2017, 21(10), 5293–5313. https://doi.org/10.5194/hess-21-5293-2017. 

7. Coxon, G.; Addor, N.; Bloomfield, J.P.; Freer, J.; Fry, M.; Hannaford, J.; Howden, 

N.J.K.; Lane, R.; Lewis, M.; Robinson, E.L.; Wagener, T.; Woods, R. CAMELS-

GB: hydrometeorological time series and landscape attributes for 671 catchments in 

Great Britain. Earth Syst. Sci. Data 2020, 12(4), 2459–2483. 

https://doi.org/10.5194/essd-12-2459-2020. 

8. Götzinger, J.; Bárdossy, A. Comparison of four regionalisation methods for a 

distributed hydrological model. J. Hydrol. 2007, 333(2), 374–384. 

https://doi.org/10.1016/j.jhydrol.2006.09.008. 

9. Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of 

the VIC-2L model: Evaluation and modification. Glob. Planet. Change 1996, 13(1–

4), 195–206. https://doi.org/10.1016/0921-8181(95)00046-1. 

10. Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The variable infiltration 

capacity model version 5 (VIC-5): Infrastructure improvements for new applications 

and reproducibility. Geosci. Model Dev. 2018, 11(8), 3481–3496. 

https://doi.org/10.5194/GMD-11-3481-2018. 

11. Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of 

the VIC-2L model: Evaluation and modification. Glob. Planet. Change 1996, 13(1–

4), 195–206. https://doi.org/10.1016/0921-8181(95)00046-1. 

12. Zhao, Q.; Ye, B.; Ding, Y.; Zhang, S.; Yi, S.; Wang, J.; Shangguan, D.; Zhao, C.; 

Han, H. Coupling a glacier melt model to the variable infiltration capacity (VIC) 

model for hydrological modeling in north-western China. Environ. Earth Sci. 2013, 



J. Hydro-Meteorol. 2024, 20, 52-65; doi:10.36335/VNJHM.2024(20).52-65                          64 

68, 87–101. https://doi.org/10.1007/s12665-012-1718-8. 

13. Wang, G.Q.; Zhang, J.Y.; Jin, J.L.; Pagano, T.C.; Calow, R.; Bao, Z.X.; Liu, C.S.; 

Liu, Y.L.; Yan, X.L. Assessing water resources in China using PRECIS projections 

and a VIC model. Hydrol. Earth Syst. Sci. 2012, 16, 231–240. 

https://doi.org/10.5194/hess-16-231-2012. 

14. Gao, H.; Tang, Q.; Shi, X.; Zhu, C.; Bohn, T.; Su, F.; Sheffield, J.; Pan, M.; 

Letternmaier, D.; Wood, E.F. Water budget record from variable infiltration capacity 

(VIC) model. 2010, pp. 120–173. Available online: 

https://eprints.lancs.ac.uk/id/eprint/89407/1/Gao_et_al_VIC_2014.pdf (Accessed 20 

April 2023). 

15. Gou, J.; Miao, C.; Duan, Q.; Tang, Q.; Di, Z.; Liao, W.; Wu, J.; Zhou, R. Sensitivity 

analysis-based automatic parameter calibration of the VIC model for streamflow 

simulations over China. Water Resour. Res. 2020, 56(1), e2019WR025968. 

https://doi.org/10.1029/2019WR025968. 

16. Dang, T.D.; Chowdhury, A.F.M.K.; Galelli, S. On the representation of water 

reservoir storage and operations in large-scale hydrological models: Implications on 

model parameterization and climate change impact assessments. Hydrol. Earth Syst. 

Sci. 2020, 24(1), 397–416. https://doi.org/10.5194/HESS-24-397-2020. 

17. Anees, M.T.; Abdullah, K.; Nawawi, M.N.M.; Ab Rahman, N.N.N.; Piah, A.R.Mt.; 

Zakaria, N.A.; Syakir, M.I.; Omar, A.K.M. Numerical modeling techniques for flood 

analysis. J. African Earth Sci. 2016, 124, 478–486. 

https://doi.org/10.1016/J.JAFREARSCI.2016.10.001. 

18. Nguyen-Xuan, T.; Ngo-Duc, T.; Kamimera, H.; Trinh-Tuan, L.; Matsumoto, J.; 

Inoue, T.; Phan-Van, T. The Vietnam gridded precipitation (VnGP) dataset: 

Construction and validation. SOLA 2016, 12, 291–296. 

https://doi.org/10.2151/SOLA.2016-057. 

19. Han, J.; Miao, C.; Gou, J.; Zheng, H.; Zhang, Q.; Guo, X. A new daily gridded 

precipitation dataset for the Chinese mainland based on gauge observations. Earth 

Syst. Sci. Data 2023, 15(7), 3147–3161. https://doi.org/10.5194/ESSD-15-3147-

2023. 

20. Datasets ECMWF. Avalable online: https://www.ecmwf.int/en/forecasts/datasets 

(Accessed on 05 June 2024). 

21. Dataset ALOS@EORC. Avalable online:  

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (Accessed on 05 

June 2024). 

22. FAO/UNESCO Soil Map of the World. FAO soils portal. Food and Agriculture 

Organization of the United Nations. Avalable online: https://www.fao.org/soils-

portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ 

(Accessed on 05 June 2024). 

23. Clamarche, “Land Cover CCI product user guide version 2.0”. 

24. Demaria, E.M.; Nijssen, B.; Wagener, T. Monte Carlo sensitivity analysis of land 

surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res. 

Atmos. 2007, 112(D11), 1–15. https://doi.org/10.1029/2006JD007534. 

25. Wi, S.; Ray, P.; Demaria, E.M.C.; Steinschneider, S.; Brown, C. A user-friendly 

software package for VIC hydrologic model development. Environ. Model. Softw. 

2017, 98, 35–53. https://doi.org/10.1016/J.ENVSOFT.2017.09.006. 

26. Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global 

optimization method for calibrating watershed models. J. Hydrol. 1994, 158(3-4), 

265–284. https://doi.org/10.1016/0022-1694(94)90057-4. 

27. Dang, T.D.; Chowdhury, A.F.M.K.; Galelli, S. On the representation of water 

reservoir storage and operations in large-scale hydrological models: Implications on 



J. Hydro-Meteorol. 2024, 20, 52-65; doi:10.36335/VNJHM.2024(20).52-65                          65 

model parameterization and climate change impact assessments. Hydrol. Earth Syst. 

Sci. 2020, 24(1), 397–416. https://doi.org/10.5194/HESS-24-397-2020. 

28. Linh, B.H.; Phuong, T.A. Assessment of the impact of reservoirs on flow variations 

on the Da River. VN J. Hydrometeorol. 2021, 731, 97–107. 

https://doi.org/10.36335/VNJHM.2021(731).97-107. 

29. Luong, N.D. Application of VIC hydrological model for simulating river flow of red 

river system to support water resource management. J. Sci. Technol. Civ. Eng.  

HUCE 2017, 11(6), 198–204. 

30. Hiep, N.H.; Luong, N.D.; Nga, T.T.V.; Hieu, B.T.; Ha, U.T.T.; Duong, B.D.; Long, 

V.D.; Hossain, F.; Lee, H. Hydrological model using ground- and satellite-based data 

for river flow simulation towards supporting water resource management in the Red 

River Basin, Vietnam. J. Environ. Manage. 2018, 217, 346–355. 

https://doi.org/10.1016/J.JENVMAN.2018.03.100. 

31. Li, Y.; He, D.; Li, X.; Zhang, Y.; Yang, L. Contributions of climate variability and 

human activities to runoff changes in the upper catchment of the Red river basin, 

China. Water 2016, 8, 414. https://doi.org/10.3390/w8090414. 

32. Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for 

conceptual rainfall‐runoff models. Water Resour. Res. 1992, 28(4), 1015–1031. 

https://doi.org/10.1029/91WR02985. 

 



 

J. Hydro-Meteorol. 2024, 20, 66-74; doi:10.36335/VNJHM.2024(20).66-74 http://vnjhm.vn/ 

JOURNAL OF 

HYDRO-METEOROLOGY

Research Article 

The integration of GNSS RTK and IMU with extended particle 

filter 

Duong Thanh Trung1* 

1 Hanoi University of Mining and Geology; duongthanhtrung@humg.edu.vn 

*Corresponding author: duongthanhtrung@humg.edu.vn; Tel.: +84–932202162 

Received: 15 April 2024; Accepted: 14 June 2024; Published: 25 September 2024 

Abstract: Global navigation satellite system is now widely applied for various applications. 

For high accuracy requirements such as surveying and mobile mapping system, real-time 

kinematic positioning (GNSS RTK) is commonly used. In the open sky, GNSS RTK can 

achieve centimeter level of accuracy in case of RTK fixed solution. However, in the GNSS-

denied or -noisy environment such as under tree canopy or under bridge, GNSS RTK 

accuracy becomes worse. To overcome this issue, this study applies an integrated system 

consisting of an GNSS RTK module and Inertial Measurement Unit (IMU) to continuously 

provide navigation solutions including position, velocity, and attitude. For data fusion, 

Extended Particle Filter (EPF) is used in this research. EPF is considered as a hybrid 

estimation strategy to overcome the limitations of Extended Kalman Filter, that is popularly 

used in data fusion. The experimental results indicated the benefit of the integrated system, 

particularly in the GNSS hostile environment. In addition, the testing result illustrated that 

the performance of EPF is significant compared to that of EKF. 

Keywords: GNSS RTK; IMU; Kalman Filter; Integration. 
 

1. Introduction 

Mobile Mapping System (MMS) has been widely applied for collecting geo-spatial data. 

In principle, MMS has two main steps: (1) capturing images by cameras or point clouds by 

laser scanners of objects of interest and (2) transforming them into mapping frames based on 

the internal and exterior orientation parameters [1, 2]. In the MMS, the position and 

orientation of the mapping sensors are popularly determined based on the integration of the 

Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU). Due to 

the low-cost and small size Micro-Electro-Mechanical System (MEMS) IMU is commonly 

used. However, the performance of the MEMS IMU is restricted, particularly in case of no 

additional constraint. [3] indicated that with the integration of GNSS and MEMS IMU in 

open sky areas such as highways and routes between countries, the position accuracy can 

reach the centimeter level. However, the position and attitude accuracy of MEMS IMU based 

in the downtown area where GNSS signals are often obstructed still do not meet the 

requirement of precise mapping with land-based MMS.  

The main purpose of this study is thus to improve the performance of MMS utilizing 

GNSS/MEMS IMU integration while reducing their cost and size. Two kinds of error are 

presented in the error theory manner: systematic error and noise affecting the performance 

of the system. With MEMS IMUs, systematic errors are mainly from biases and scale factors 

of the gyroscopes and accelerometers. Calibration is implemented for treatment. However, 

intensive calibration with professional equipment would increase the cost significantly. In a 

practical sense, aid measurements from GNSS and other integrated sensors can compensate 

for the systematic error of the IMU. Developing an effective integration strategy is thus the 
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key to reducing the effect of systematic errors in an IMU. Although stable in the long term, 

GNSS measurements suffer from many sources of deterministic errors, such as ionosphere, 

troposphere delay, time synchronization error, and multipath [4]. For reliable aid 

measurements, GNSS data processing is considered. 

Unlike systematic errors, noise is a form of un-deterministic error that can be treated by 

stochastic processing. For this task, the behavior of noise should first be modeled. The 

general theory about noise modeling was presented by [5] and the behavior of noise in an 

INS was described by [6, 7]. In general, the noise behavior in INS is divided into four types: 

white noise, random constant, random walk, and exponentially correlated random. 

Calibration is necessary and the noise is modeled by an appropriate mathematical process to 

understand the behavior of sensor noise. The Gauss-Markov process is popularly used to 

describe and model the behavior of noise. Given that the noise has been modeled, it is 

accounted for in the estimation process (i.e., Kalman filter (KF)) to obtain the highest 

probability of the output solutions. 

The two effective ways to restrict these kinds of errors to improve the performance of 

the integrated navigation system are improving GNSS solution using GNSS Realtime 

Kinematic Positioning (RTK) and using optimal estimation algorithms. While GNSS RTK is 

easy to archive using enclosed commercial GNSS RTK receivers, this research focuses on 

estimation strategies. For estimation, the KF [8] is popularly known as an optimal estimation 

strategy. The KF aims to determine the state vector of the system states based on the 

minimization of covariance. The advantage of the KF is its reliability and simplicity. The 

main limitation of KF is that it can only be applied on linear function and assuming Gaussian 

noises. When the state and measurement model functions are non-linear, Linearized KF 

(LKF) or Extended KF (EKF) are applied instead of KF for estimation. In these strategies, 

non-linear functions are linearized keeping the first order of Taylor series expansion. The 

calculation sequence is similar to that of KF. However, LKF and EKF have limitations that 

were reported by several researchers [9–12]. The limitations of LKF or EKF are that only 

small errors are allowed during estimation and the presence of nonlinear error behavior might 

violate the assumption, thus generating biased solutions. Choosing an appropriate INS error 

model in KF-based systems is also not a trivial task [13]. 

One of the approaches to improve the performance of the integrated system is sampling-

based filter approach such as Particle Filters (PF) [14, 15] and Unscented Kalman filter 

(UKF) [10, 13]. A typical and early developed algorithm of sampling-based filtering 

approaches is the PF. In the PF, the set of points (particles) is generated randomly with 

associated weights. The details of the PF were presented by [14, 16]. Besides the advantages 

that have been reported, PF also has several disadvantages that make it unpopular in 

integration. PF relies on important sampling, thus requires the design of a proposal 

distribution that can approximate the posterior distribution reasonably well. Designing such 

proposals is generally hard [14, 15]. Another improvement of sampling-based filter methods 

is using a hybrid scheme between generic PF and other linear Gaussian estimation methods. 

The study [17] introduced hybrid methods in which EKF and UKF Gaussian approximations 

are used as the proposal distribution for PF. The simulation result shows that this hybrid 

scheme, particularly PF based on UKF, performs better than other linear Gaussian estimation 

methods such as EKF and UKF. The study [18] applied and evaluated the performance of 

UPF, UKF, and EKF with INS/GPS integration using MEMS IMU. The results indicate that 

the improvement of non-linear, non-Gaussian estimation compared with EKF was about 10% 

to 20%. The study [19] evaluated the feasibility of some estimations for non-linear function 

in positioning. The study [20] evaluated the performance of a low-cost INS/GPS integration 

system using the street return algorithm. 

In general, the advantage of sampling-based methods over KF-based methods is that it 

can be applied on a non-linear function with arbitrary density distribution. Their performance 
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is thus better than that of KF-based methods. Some limitations of sampling-based methods 

were still reported. The choice of an optimal proposal probability density function to draw 

samples is difficult to implement. The manner of generating the samples is also a difficult 

task for certain applications. Computational burden is the main disadvantage of these 

algorithms for real-time applications. In order to deal with non-Gaussian noise in the 

GNSS/IMU system, this study applies a non-linear, non-Gaussian estimation algorithm, 

called Extended Particle Filter (EPF) to improve the performance of the system. 

2. Methods  

2.1. Integration strategy 

In the integration scheme, the GNSS carrier-phase measurements are processed using a 

base station. The GNSS RTK module provides positions and velocities in the navigation 

frame as the updating measurements for the data fusion engine such as EKF. Angular rates 

and specific forces, the output of IMU is processed based on an INS mechanization to provide 

position, velocity, and attitude. In data fusion engine, EKF is first applied. A set of particles 

is generated based on Gaussian approximation from EKF output. EPF is then applied to 

provide optimal solutions. Figure 1 shows the integration scheme. 

 

Figure 1. The integration scheme. 

2.2. Extended Kalman Filter 

EKF is the combination of nonlinear and linearized filtering techniques. In the prediction 

step, the nonlinear function is directly used to time-update the state vector, but the associated 

covariance is estimated based on the Jacobian matrix: 

 ( )k k 1 k 1x f x w− −= +                     (1) 

where xk is the state vector consisting of position, velocity, and attitude at time k; w is 

system noise. Components of state vector is described in the below equation: 

       
T

n n n

21 1 b g a g ax r r b b s s
 =                           (2) 

where rn, vn, and rb
n are position, velocity, and attitude of the system in the navigation 

frame; bg, ba, sg, and sa are the biases and scale factors of the IMU, respectively. 

In the measurement update step, state vector is propagated through the nonlinear 

measurement equation to calculate the innovation in the next step: 
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      ( )k kz h x n= +                             (3) 

where zk is an updating measurement; h(xk) is a function of a state vector; n is the 

measurement noise. 
Figure 2 depicts the process and the performance of the EKF. 

 

Figure 2. The process and performance of the EKF. 

2.3. Estimation with Extended Particle filter 

Generally, the hybrid estimation strategies use a Gaussian approximation as the proposal 

distribution to generate particles. A Gaussian approximation of ( )k k 1 0:kP x x ,z− using EKF 

is called Extended Particle Filter (EPF). In these strategies, first, EKF is implemented to 

obtain the Gaussian approximation of ( )k k 1 0:kP x x ,z− including estimates of the state and 

their covariances. Then the particles are sampled based on those estimates. 

( )
i

i i
k k 1x f X , w−=                               (4) 

With associated weight  

  
( ) ( )

( )

i i i
k kk k 1

i

k

k k

p z x p x x

w
N x ,P

−

=                      (5) 

where ( )k k 1 1:k 1P x x , z− − denotes the distribution density function of xk  given xk−1 

and z1:k-1; N(.) denotes the Gaussian distribution; x̂k, Pk  are mean and covariance 

approximated by EKF. 

The state vector and covariance matrix of the current time epoch are determined by 

weighted average of the generated particle: 

N i i
k ki 0

x w X
−

=
=                            (6) 

       ( )( )
T

N i i i
k kxx k ki 0

P w X x X x
− −−

=
= − −                  (7) 

Figure 3 describes the flowchart of the hybrid estimation and Figure 4 illustrates the 

principle of this estimation strategy. 
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Figure 3. Flowchart of Extended Particle Filter. 

 

Figure 4. Principle of Extended Particle Filter with Gaussian approximation. 

3. Experiment and discussion 

The purpose of the experiment is to evaluate the performance of the integrated system in 

comparison with a stand-alone GNSS receiver and between estimation strategies, including 

EKF and EPF. For those purposes, three systems were set up on a platform to evaluate the 

performance of the given system and methodology. The reference system is a dual frequency 

RTK GNSS receiver, Leica viva GS16. The system is connected with the VNGEONET 

CORSs for RTK fixed solutions. In addition, various check points were built along the 

reference trajectory. The coordinates of the check points were determined by using a total 

station, the accuracy is guaranteed at the level of centimeter. The first testing system is a 

single frequency GNSS receiver, GNSS EVK-NEO M8T to provide Single Point Positioning 

(SSP) solution. The second testing system is the integration of the GNSS RTK module, Ublox 

ZED-F9P and an IMU, Xsens-MTi-3. Specification of the integrated system is described in 

table 1. The integrated system and testing platform is depicted in Figures 5a, 5b.  
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Table 1. The specification of main components. 

Devices Unit Value 

Number of concurrent 

GNSS 

GNSS 

system 

4 

Position accuracy m 0.01 m + 1 ppm 

Output rate Hz 1 Hz 

Gyroscope Unit Value 

In-run Bias [°/s] 10 

Noise density [°/s/√Hz] 0.007 

Non-linearity [%FS] 0.1 

Accelerometer   

In-run Bias [mg] 0.03 

Noise density [mg/√Hz] 120 

Non-linearity [%FS] 0.5 

 

Figure 5. The integrated system (a) and testing platform (b). 

The data were collected continuously under different environment scenarios, including 

in open sky view and GNSS-denied view in Hanoi, Vietnam (Figure 6). The integrated GNSS 

RTK/IMU data is processed by a software module written in C++ programing language with 

two algorithms, EKF and EPF. The graphical user interface of the software module can be 

seen in Figure 7a. For analysis, four output solutions including GNSS SSP, GNSS RTK, 

GNSS RTK/IMU with EKF and GNSS RTK with EPF are compared with GPS time 

synchronization. The trajectory of the test can be seen in Figure 7b. For detailed analysis, 

enlargements of two typical testing scenarios including in the open sky view and under bridge 

view as shown in Figures 8a, 8b. The numerical analysis can be seen in Tables 2, 3. 

 

Figure 6. Testing scenarios in open sky view (a) and GNSS-denied view (b). 

Table 2. Numerical results in the open sky view area. 

 Availability (%) Min(m) Max(m) Mean(m) Std. Deviation(m) 

GNSS SSP  99 0.450 9.610 2.400 1.560 

GNSS RTK 95 0.002 0.720 0.030 0.026 

GNSS RTK/IMU EKF 99 0.003 0.810 0.040 0.035 

GNSS RTK/IMU EPF 99 0.003 0.710 0.040 0.032 

(a)

(b)

(a) (b)
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Figure 7. (a) GUI of the software module, (b) Testing trajectory of the test. 

 

Figure 8. (a) Enlargement of scenario open sky view area in the test, (b) Enlargement of under bridge 

area in the test. 

Table 3. Numerical result in the under-bridge area. 

 Availability (%) Min(m) Max(m) Mean(m) Std. Deviation(m) 

GNSS SSP 72 0.120 20.600 4.650 5.560 

GNSS RTK 

- SSP 

- RTK float 

- RTK fixed 

57 

20 

0 

0.05 5.820 3.540 4.563 

GNSS RTK/IMU_EKF 99 0.015 10.530 2.401 3.403 

GNSS RTK/IMU EPF 99 0.012 1.530 1.240 1.340 

From the test, in the open sky, GNSS can continuously provide solutions with 

homogenous accuracy. GNSS RTK can provide a position at accuracy about 3 centimeters 

while GNSS SSP can provide 1.5-meter level of accuracy. Consequently, the integration of 

GNSS RTK/IMU with EKF or EPF can provide navigation solution at accuracy of about 3-

4 centimeters. In this case EKF or EPF do not help to improve the accuracy of the system 

because the position update mainly relies on the GNSS RTK. 

In the under-bridge environment, accuracy, and availability of GNSS degrade seriously.  

The availability of GNSS SPP solution is 72% at accuracy of about 6 meters. In this testing 

scenario, GNSS RTK cannot provide RTK fixed solution any time, only RTK float solution 

(a) (b)

(a) (b)
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of 20% and 57% of SSP. Overall positional standard deviation of GNSS RTK is about 5 

meters. In contrast, with the integration of GNSS RTK and IMU, availability of navigation 

solution is still at 99%. In this case, the performance of EPF is better than that of EKF with 

standard deviation of 1.3m compared to 3.4m in the EKF. 

4. Conclusions 

This research evaluates the performance of an integration scheme that combines the 

GNSS RTK and IMU and an estimation strategy called EPF.  

Field test in different environmental scenarios were implemented to collect data for 

analyzing the performance of the different integration architecture and estimation strategies.  

The result from the experiment indicated that the integration of GNSS RTK/IMU enables 

to seamlessly provide navigation solution in any environmental scenarios. However, the 

positional accuracy of the system mainly relies on the position provided by GNSS.  

The EPF with non-Gaussian noise estimation performs a significant improvement in 

terms of positional accuracy compared to that of EKF. 
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Abstract: Sand production is a serious problem during oil and gas production in 

unconsolidated sandstone formations. It can rapidly damage downhole and surface equipment. 

Therefore, oil and gas contractors constantly seek methods to control sand production. 

However, in unconsolidated sandstone formations, sand production typically occurs during the 

later stages of production. Some wells encountered sand production from the beginning stage, 

while others could be produced without having sand production if managed properly. This 

indicates that sand production is influenced by both reservoir properties and well production 

operating conditions. Reservoir properties can be determined during the exploration phase. 

Additionally, several researchers have demonstrated that sand production mechanisms are 

linked to these reservoir parameters. In this paper, we employ a geomechanical model to 

predict the critical reservoir pressure and critical drawdown pressure values leading to sand 

intrusion and subsequently propose well completion strategies of Expandable Sand Screens to 

prevent sand production and optimise production performance processes to enhance the 

efficiency of oil and gas exploitation investments. The accurate assessment of sand occurrence 

in production process potential enables investors to make mindful decisions regarding sand 

control measures for specific wells. Sand control is an expensive and risky undertaking; 

however, it is crucial for wells with high sand production potential to prevent damage to surface 

equipment and operational complications caused by sand. 

Keywords: Geomechanical modeling; Sand intrusion; Pressure; Sand control; Well 

completion. 

____________________________________________________________________ 

1. Introduction 

The Hai Thach field is located in block 05-2, the south part of the Nam Con Son basin, 

on the continental shelf of southern Vietnam. The field is 330 km southeast of Vung Tau city, 

an oil and gas field in a deep-water area of 134 m. The field produces from miocene 

unconsolidated sandstone reservoirs (Dong Nai formation, BIII sand), middle miocene 

(upper and lower Con Son formation, BII.2.20, BII.2.30, and BII.1.10 Sands), lower miocene 

(upper and lower Bach Ho formation, BI.2.20, BI.2.30, BI.1.20 sands), lower oligocene 

(lower Tra Tan formation, E.10 and E.20 sands), and pre-tertiary basement. The structural 

configuration of the Hai Thach gas field includes horseshoe-shaped faults trending north, 

northeast, and south-southeast (MMH & LMH) and block-type shoulder faults trending east 

(MMF) located below the main discontinuous unit (MMU). Most faults are truncated at 

MMU, but a few faults extend and overthrust the UMA unit. Well X drilled on the horseshoe-

shaped structure of the Hai Thach field [1, 2]. The cross-sections of some of the gas reservoirs 

that Well X will penetrate are shown in Figure 1. 
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Figure 1. Geological Cross-Sections of the Hai Thach field. 

Sand production in the oil and gas production process occurs when a significant number 

of solid particles detach from the formation. These particles are carried by the fluid flow into 

the well and to the surface along with the produced hydrocarbons. 

These solid particles can be different in composition and size, but they are primarily sand 

particles with a size range of 0.60 mm to 4.75 mm. When the amount of these solid particles 

exceeds the allowable limit, sand control measures must be implemented to protect the well, 

downhole equipment, and ensure safe and efficient production. This allowable limit depends 

on the equipment, type of sand, reservoir conditions, and company strategy [3]. A common 

benchmark for comparison is 0.1% of the total produced volume. 

The reservoir lithology in the Hai Thach field is mainly weakly consolidated sandstone. 

Sand production in these reservoirs occurs in two stages. The specific form of sand 

production varies depending on the characteristics of the reservoir. To effectively control 

sand production, it is essential to 

understand the characteristics of the 

reservoir being produced and select the 

appropriate treatment method. 

2. Materials and methods 

2.1. Pressure model 

When a well is drilled into a 

formation, the rock material is 

displaced upwards. The wellbore wall 

is only supported by the drilling fluid 

pressure in the wellbore. If this fluid 

pressure is not balanced with the in-situ 

stresses, stress redistribution occurs 

around the wellbore. This can lead to a 

total stress greater than the formation’s 

resistance, resulting in failure. 
Figure 2. In-situ stress model around a drilled wellbore 

[4]. 
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The various stresses and pressures include:  σv is the ertical stress; σH is the maximum 

horizontal stress, σh is the minimum horizontal stress; pf is the drilling fluid pressure in the 

formation; pw is the flowing pressure of fluid from the formation into the well; σθ is the 

tangential stress; σr is the radial stress; σz is an axial stress, typically vertical. 

The determination of new stresses around a wellbore involves considering the inclination 

angle (i) and the azimuth angle (θ). According to reference [21], the new stress values can be 

calculated using the following formulas: 
2 2 2 2 2

x H h vcos cos i sin cos i sin i =   +  +     (1) 

2 2

y H hsin cos =  +      (2) 

2 2 2 2 2

z H h vcos sin i sin sin i cos i =   +  +      (3) 

When considering a soil or rock element on the wellbore wall, the stresses are distributed 

according to a cylindrical coordinate system with coordinates (r, z, θ). 

  
xy H h

1
( )sin 2 cosi

2
 =  −       (4) 

 2 2

xz v H h

1
sin 2i( cos sin )

2
 =  − −      (5) 

 
zy H h

1
( )sin 2 cosi

2
 =  −       (6) 

When analyzing stress distribution around wellbores, the polar coordinate system is 

often used to represent the stress components. The stress values for soil or rock elements 

surrounding the wellbore in polar coordinates are shown in Figure 3. 

Wellbore Stability Analysis Using the 

Fracture-Strain Model for Vertical Well X: 

The fracture-strain model for vertical wells 

assumes that the principal stresses are 

perpendicular to the wellbore axis are shown 

in Figure 4. This implies that the stresses at 

the wellbore wall can be represented by: 

The model is based on the premise that 

wellbore failure occurs when the tangential 

stress at the wellbore wall exceeds a certain 

threshold. While other stress components also contribute to wellbore failure, their effects are 

considered negligible in this model [6]. 

To establish a sand production model, it is crucial to identify the time or location at 

which wellbore failure initiates, leading to sand intrusion. To prevent this phenomenon, the 

maximum effective tangential stress (στ1 - pw) must be less than the effective strength (U) of 

the formation. This can be expressed as: 

Figure 3. Stress state at the wellbore. 

Figure 4. Tangential stress at the wellbore wall [5]. 
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 1 wp U −       (7) 

According to [3], the bottomhole pressure value to prevent sand production is determined 

as follows: 

H h
w o

3 U A
p P

2 A 2 A

 − −
 −

− −
    (8) 

The critical drawdown pressure (CDP) is defined as the maximum reduction in wellbore 

pressure from reservoir pressure that can be applied without causing wellbore failure. It can 

be determined using the following equation: 

w op P CDP= −     (9) 

Substituting Equation (7) into Equation (8), we obtain: 

 o H h

1
P 3 U CDP(2 A)

2
=  − − + −    (10) 

or                                     o H h

1
CDP 2P (3 U)

2 A
= −  − −

−
 (11) 

While the wellbore fracture model presented earlier can be applied to vertical wells, 

adjustments are necessary for inclined wells due to their non-vertical orientation. These 

adjustments account for the influence of wellbore inclination on stress distribution and 

formation failure. 

The critical reservoir pressure (CRP) is defined as the reservoir pressure drop 

corresponding to a CDP of zero. This implies that at this pressure, formation failure can occur 

under any further pressure reduction. The relationship between CRP and CDP can be 

expressed as: 

H h3 U
CRP

2

 − −
=      (12) 

The formation strength (U) represents the maximum stress that the formation can 

withstand before failure. It is typically determined through laboratory experiments on thick-

walled cylindrical samples with outer-to-inner diameter ratios ranging from 3 to 3.8. [6–8]. 

The expression for U is given by: 

U 3.1TWC=      (13) 

The thick-walled cylinder strength (TWC) can be determined experimentally or through 

empirical formulas [5]: 
0.5242TWC 83UCS=      (14) 

The aforementioned formulas and parameters can be incorporated into a computational 

model to assess the critical reservoir pressure (CRP) and formation failure potential. The 

model can be implemented using Excel to perform calculations and generate results. 

2.2. Data collection and processing 

Well X research was carried out in reservoir E20, this is a well with a vertical well 

completion zone, with coefficient stress change ratio is 0.62 and reservoir has Max. 

Perforation diameter 1.965inch, bio elastic is 1, depletion is zero percent, The average 

particle diameter is 300 µm with reservoir data given in Table 1. 

Table 1. Input data for well X in reservoir E20 GOC [1]. 

Well 

Diameter 

(in) 

True 

vertical 

depth 

(TVD) 

(m) 

Inclination 

(deg.) 

Azimuth 

(deg.) 

Poisson’s 

ratio 

(MPa) 

Pore 

pressure 

(deg.) 

Unconfined 

Compressive 

strength 

(Psi) 

Vertical 

stress 

(Psi) 

Min 

Horizontal 

Stress 

(Psi) 

Max 

Horizontal 

stress 

(Psi) 

Mean 

grain 

diameter 

(µm) 

12.25 2266 52.7 230.5 0.26 3197 1870 6650 4959 5207 204.8 
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3. Results and discussion 

3.1. Calculate sand generation pressure for well X 

By using Microsoft Excel software and using the formulas from (1) to (11), with the data 

of well X given in Table 1. The study can determine the intermediate parameters of stresses 

as shown in Table 2. 

Table 2. The calculation results of the stress. 

x y z xy xz zy 

6173.61 4900 5626.38 99.34 751.75 141.88 

After calculating the stress components, we calculate the intermediate components and 

the resulting pressure drop is given in Table 3. 

Table 3. The calculation results of physical and mechanical components of rock. 

A TWC U CRP CDP CBHFP 

0.67 4222.45 10302.78 1659.03 2536.45 813.54 

 

 

Figure 5. Critical drawdown pressure results for well X. 

The presented model is constructed based on data that elucidates the influence of 

reservoir pressure and drawdown on formation failure. The X-axis represents reservoir 

pressure, while the Y-axis represents wellbore pressure. A diagonal line (in blue) denotes the 

positions where reservoir pressure equals wellbore pressure, dividing the graph into two 

sections. The upper portion represents the scenario of overbalanced drilling and injection, 

while the area below the line represents the drawdown process during well production. The 

failure line (safe zone - without sand production risk) is also depicted on the graph. In Figure 

5, the failure line (in red) intersects the diagonal line at a pressure of approximately 1659 psi. 

This represents the threshold below which wellbore pressure should not fall to prevent sand 

production. This failure line varies depending on the specific rock strength and completion 

method employed. Rock strength is typically determined by the Unconfined Compressive 

Strength (UCS) value. The failure line illustrates the pressure conditions under which 
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reservoir and wellbore pressures can cause formation failure. In the presented graph, the 

region (Safe zone - without sand production risk) encompasses pressure conditions above the 

failure line, indicating the absence of sand production. Conversely, the area to the left 

represents the zone where formation failure and potential sand production occur [9–11]. 

We get the results of the sand production zone pressure, the results for well X are shown 

in Figure 5. We determine the maximum wellbore decline pressure (Max. Drawdown, 

CBHFP) is 8.13.54 psi and the maximum decline reservoir pressure (Max. Depletion 

Rerservoir Pressure) is 3350 psi (Figure 5). Therefore, controlling bottom pressure to 

maintain reservoir pressure within the threshold of not generating sand will optimize the 

exploitation process. 

3.2. Proposed completion solutions for Well X using gravel-packed screens 

The type of screen, screen mesh size, and gravel size (if using gravel packing) should be 

carefully designed and selected based on the specific characteristics and properties of the 

formation. Gravel packing design procedure for wells [12]: Particle size analysis based on 

core samples; gravel selection; screen selection; gravel transport fluid selection; method for 

placing gravel mixture at the well bottom. This study introduces a method for particle size 

analysis based on core samples and presents the selection criteria of gravel and screen. After 

analyzing the grain size distribution of the reservoir sand, the authors selected the gravel 

packing material and then, based on the screen selection criteria, calculated the screen 

opening size and selected the Expandable SandScreen. 

Currently, there are many types of sand screens available worldwide, such as Expandable 

Screens, Con-Slot screens, gravel-pack screens, etc. This study focuses on one type of sand 

screen, the Expandable Screen. This type of sand screen is expandable and can be adjusted 

in size, making it a new product in this field with significant advantages over previous sand 

screens. Expandable Screens can replace both conventional and modern sand control 

techniques due to their superior design: they eliminate the annular space between the 

wellbore and the screen, maximizing the flow area inside the production tubing and 

stabilizing the flow within the tubing [13–15]. 

Expandable Sand Screens (ESS) represent a significant advancement in sand control 

technology, addressing the issue of sand production by utilizing an expanding screen that 

fills the annular gap between the wellbore and the formation. This innovative design not only 

eliminates the need for gravel packing but also provides enhanced formation support. 

Additionally, the installation of ESS reduces the required casing size during wellbore 

completion and facilitates easy intervention for adjustments [16]. 

 

Figure 6. Expandable Screen [14]. 
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Figure 7. Expandable Screen around annulus [17]. 

Expandable sand screens (ESS) have revolutionized sand control equipment by 

eliminating the annular gap between the wellbore and the screen [18]. This innovative design 

maximizes the flow area within the production tubing, eliminating turbulent flow along the 

annular space and minimizing erosion of the wellbore. Consequently, ESS contributes to 

enhanced wellbore stability. 

Compared to open-hole completions and gravel packing techniques, ESS offers a more 

uniform pressure drawdown and a less variable inflow characteristic. These advantages 

translate into improved production capabilities, particularly in horizontal wells. Additionally, 

ESS implementation in multilateral wells is significantly simpler compared to conventional 

sand control methods, which often involve complex installation procedures and are prone to 

operational issues [19–20]. 

4. Conclusion 

Given the complexities of the oil and gas industry and the ever-increasing demand for 

energy, the pursuit of optimized sand control methods remains crucial. Sand production, 

especially in large quantities, can lead to severe consequences, including sand accumulation 

in wellbores and surface equipment, erosion of both downhole and surface equipment, and 

formation collapse. 

Utilizing geomechanical models to determine sand production pressure serves as a 

valuable tool in sand management and mitigation strategies. These models enable the 

identification of sand production thresholds and critical drawdown pressures for the 

formation. Armed with this information, petroleum engineers and mining technology experts 

can promptly implement effective reservoir management measures to minimize sand 

production and optimize reservoir extraction. 

For gas wells in the Hai Thach field, expandable screen (gravel-packed screen) sand 

control methods have been proven suitable for wells experiencing sand intrusion after a 

period of production. However, their implementation requires: 

• Elimination or filling of the annular gap; 

• Creation of the smallest possible choke or elimination of sand accumulation; 
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• Minimize pressure loss during fluid flow; 

• Reduction or elimination of gravel bag damage; 

• Enhanced formation support. 
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Abstract: In recent years, Unmanned Aerial Vehicles (UAVs) technology has advanced 

substantially, which created new opportunities in developing monitoring applications for 

forest resources management. UAVs are capable of flying and capturing at varying altitudes, 

angles, and attaining precise images. These collected data are continuously, quickly, 

efficiently, and crucially provide insight into forest health situations. Importantly, these 

captured images cover other useful factors such as changes in the status of biodiversity, 

deforestation, and forest recovery. The aim of this study is to combine UAV images with 

satellite imagery for a powerful tool in monitoring and evaluating forest dynamics and 

resources. Accordingly, Landsat 8 images in 2020, UAV images 2023 and GIS technology 

were employed to create a forest map in Xuyen Moc district, Ba Ria - Vung Tau province 

allowing an evaluation of changes in forest area over a spanning period of 2020-2023. The 

results indicated that the forest area changed at a rate of 4.1% (9.37 ha) in which the largest 

change was bare land with a substantial decrease of 8.08 ha meanwhile restored forests 

increased a remarkable area of 7.85 ha over the period 2020-2023. These changes were 

detected by overlaying forest maps 2020 and 2023 with the accuracy is 90.6% and Kappa 

coefficient was 0.87%. The findings suggest that the latest application of UAVs coupled 

with GIS technology brought significant conveniences with images retrieved from UAVs, 

providing a quick, reliable and competitive approach to the management practices of forest 

resources. 

Keywords: UAV; Forest map; Forest change map; Landsat. 

 

1. Introduction 

Forests, those priceless natural treasures and the lungs of our planet, play a vital role in 

the Earth’s ecosystem [1–2]. Their influence extends to maintaining natural balance and 

mitigating climate change. However, forests are under threat, grappling with issues such as 

habitat loss, illegal logging, and forest fires. To safeguard and sustainably manage these vital 

ecosystems, monitoring forest developments becomes an essential and crucial task [3–4]. 
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Unmanned Aerial Vehicles (UAVs) have gained popularity across various fields, 

including agriculture, forestry, surveying and mapping, urban management, and fast delivery 

of useful information for decision-makers [5–7]. Their efficiency and productivity have made 

them becoming an indispensable tool for a wide range of environmental and natural resources 

management. UAVs not only reduce production costs but also enhance accuracy and improve 

service quality and customer relationships [8]. These applications underscore the significant 

impact drones have on industries worldwide. Presently, UAV-based applications in the field 

of forest research encompass a diverse range of tasks, including resource inventory, disease 

mapping, forest development monitoring, species classification, and fire monitoring and 

assessment. These applications primarily focus on different domains as enumerated as below.  

Resource inventory, UAVs are employed to assess and quantify forest resources, 

including tree density, canopy cover, and vegetation distribution. The study [9] conducted a 

study by using point clouds and digital elevation models, particularly the Canopy Height 

Model (CHM), to inventory forests between 2013 and 2015. Estimating tree height using 

UAV photos provides accurate information about biomass volume, supporting forestry 

management activities. 

Disease mapping: By capturing high-resolution imagery, UAVs aid in identifying and 

mapping diseases affecting trees and other vegetation. The Convolutional Neural Network 

(CNN) algorithm on UAV images is frequently employed for disease detection in plants. 

Research has focused on various plant species, with grapes and watermelon being particularly 

notable. Over 10 types of diseases have been identified, with fungi accounting for more than 

60% of cases, while the remainder are caused by viruses, nematodes, and abiotic factors [10]. 

Species classification: UAVs contribute to species identification and classification, 

crucial for biodiversity monitoring and conservation efforts. In a comparative study using the 

EfficientNetV2 model alongside other widely used transfer learning models (ResNet50, 

Xception, DenseNet121, InceptionV3, and MobileNetV2), the results demonstrate that 

EfficientNetV2 achieves recognition rates of up to 99% for seven plant species. This 

impressive outcome was achieved by the research team [11]. 

Forest development monitoring: Tracking changes in forest structure, growth, and 

regeneration over time is facilitated by UAVs. Investigating six forest plots with varying 

structures, the research reveals that changes in canopy height patterns directly mirror forest 

degradation. The fine texture corresponds to a uniform distribution of small tree canopies, 

indicative of ongoing regeneration after overexploitation [12].  

Fire monitoring and assessment: UAVs play a pivotal role in monitoring forest fires, 

assessing their impact, and aiding in post-fire recovery efforts. Additionally, UAVs are 

instrumental in quantifying spatial distances within forested areas and estimating soil 

movements following harvest activities. The successful deployment of UAVs in forestry 

hinges on several key features such as Flexibility in flight planning, Cost-effectiveness, 

Reliability and autonomy, and Timely availability of high-resolution data [13, 14]. 

 Satellite images play a crucial role in monitoring natural resources (water, land, forest), 

which perform numerous advantages for tracking and safeguarding valuable resources. 

Satellites equipped with a variety of sensors capture high-resolution imagery of the Earth’s 

surface. Optical sensors provide visible and infrared imagery, while multispectral and 

hyperspectral sensors collect data across several narrow bands. This enables detailed land 

cover classification and vegetation analysis [15]. To monitor forest changes from the past 

(specifically, when UAV images were not available in 2020) up to 2023, Landsat 8 satellite 

images can be freely downloaded from online platforms [16, 17]. The 8th generation satellite 

- Landsat 8 was successfully launched into orbit on November 2, 2013. Landsat 8’s primary 

mission is to deliver crucial information across various domains, including energy and water 

management, forest monitoring, environmental resource assessment, urban planning, disaster 
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recovery, and agriculture. Multispectral image bands with a 30-meter resolution offer 

valuable insights for creating forest maps and evaluating forest health [18, 19].   

Forest monitoring involves precisely identifying the various types of forests and the land 

designated for existing forest development. It aims to quantify changes in forest volume over 

time, considering each forest type and the primary objectives of the campaign. This 

information is crucial for strategic forest management, protection, and development planning. 

The process typically includes gathering data on tree density, forest cover, fluctuations in 

forest area, and other relevant factors such as vegetation, animal species, and environmental 

conditions [20]. Monitoring forest developments plays a critical role in assessing forest health 

and management. It enables the detection of forest degradation and identification of threats 

to the forest environment, including environmental destruction, illegal mining, and forest 

fires. By collecting data and closely monitoring forests, forest managers and environmental 

organizations can implement measures to safeguard forests, strengthen their capacity to 

combat forest fires, and propose effective management policies for the protection and 

preservation of forest ecosystems [21]. A forest status map is a thematic map that delineates 

the boundaries of forest status plots based on the current forest classification system. These 

maps are overlaid onto topographic maps, with each map corresponding to a specific scale. 

This practice aligns with Clause 6, Article 2 of Circular No. 31/2018/TT-BNNPTNT, issued 

by the Ministry of Agriculture and Rural Development on November 16, 2018 [22].  

The forest change map is a widely employed tool for analyzing, managing, and 

monitoring forest dynamics. These maps draw upon data from diverse sources, including 

satellite images, aerial photographs, ground-based measurements, and other geospatial 

information. By leveraging image analysis techniques and geostatistical methods, forest 

change maps facilitate the identification, classification, and quantification of forested areas, 

enabling the assessment of their temporal changes over time [23]. Forest change maps serve 

the purpose of documenting and monitoring alterations in both the extent and condition of 

forests within a specific region. These maps offer insights into the fluctuations whether 

growth or decline of forested areas over time. Researchers, governmental bodies, and 

environmental organizations rely on these maps to gain an overview of the forest state and 

track the ecosystem changes occurring within these vital ecosystems [24]. 

2. Materials and Methods 

2.1. Study area 

The study area is located in Phuoc Thuan commune, which falls within the Xuyen Moc 

district of Ba Ria - Vung Tau province, situated in the Southeast region of Vietnam (Figure 

1). The study area covers 2.23 km2 within the total land area of Phuoc Thuan commune, 

which spans 52.02 km2. The forest area of this current study is a part of the renowned 

primeval forest of Binh Chau - Phuoc Buu. Being referred to as the “green lung” of Xuyen 

Moc district, this forest area is the harbors of about 800 plant species and over 350 animal 

species, including several rare and unique inhabitants. 

2.2. Method for acquisiting image data using UAV and creating forest maps in 2023 

UAV data was collected using a DJI Matrice M300 aircraft and a DJI Zenmuse L1 sensor 

(Figure 2). The Matrice 300 RTK is the most advanced UAV with a range of new safety 

features, high-tech solution design, expanding capabilities and exploring previously 

unexplored areas of work. DJI Zenmuse L1 integrates a Livox lidar sensor, high-precision 

IMU and a 1-inch CMOS sensor camera, 20MP resolution and mechanical shutter on a 

Zenmuse 3-axis stabilized gimbal. In particular, Zenmuse L1 can also be exploited to create 

real-time terrain-aware flight paths. 
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Figure 1. The study area is located in Phuoc Thuan commune, Xuyen Moc district, Ba Ria Vung Tau province. 

 

Figure 2. DJI Matrice M300 UAV and DJI Zenmuse L1 sensor. 

Using two benchmarks of basis cadastral coordinates, specifically Nui Le and Theo Neo, 

provided by the Survey and Mapping Data Center, serves as the foundation for establishing 

a base station. This base station facilitates the transmission of signals to the UAV, enabling 

them to conduct aerial photography using GNSS RTK technology (Figure 3). The Hi-Target 

V30 satellite positioning device serves as the base station, strategically positioned at the 

benchmark of basis cadastral coordinates. The base station plays a crucial role in receiving 

signals from multiple satellites simultaneously, across various frequency bands. Its primary 

objective is to ensure accuracy. Subsequently, it transmits and corrects signals to the UAV 
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which now functions as a rover. Throughout the flight and image capture process, the UAV 

continuously receives satellite signals, akin to the base station on the ground. Simultaneously, 

it receives correction signals from the base station. By comparing and calculating this 

information, the UAV derives the most precise results in terms of coordinates and altitude 

for each image projection center [25, 26]. 

To survey the entire study area, from November 13 to 14, 2023, we conducted 10 flights 

at an altitude of 150 meters. Both the overlap along track and the overlap across track were 

set at 80%. The total implementation time for this comprehensive aerial survey exceeded 7 

hours, resulting in a set of 1100 images. 

 

Figure 3. The operational principle behind the signal reception of UAV RTK [27]. 

Agisoft Metashape software was used to process images and create the orthomosaic of 

the study area. After collecting information about the research area, determine the task of 

image interpretation. UAV images, with their exceptionally high resolution, reveal distinct 

characteristics for each class of objects. When observing these images, the unique features 

of different objects become evident. Use direct reading and drawing diagnostics including 

color, shape, size, pattern, shadow, texture, indirect standards including distribution 

standards and relationships between objects to interpret using eyes and then digitize types: 

water, bare land, recovering forests, growing forests, old forests (Table 1). 

Table 1. Identifying characteristics of the types to be interpreted. 

Class Image on orthomosaic Identifying characteristics 

Water  

 

Ash gray color, very smooth structure. 

Bare land 

 

White mixed with green and black spots. 

Recovering forests 

 

Light green color, very fine structure. 

Growing forests 

 

Green color, smooth structure. 
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Class Image on orthomosaic Identifying characteristics 

Old forests 

 

Dark green color, quite smooth structure mixed 

with black shadow. 

After digitizing the data of 5 layers, the forest map in 2023 was edited by using ArcGIS 

software. 

2.3. Method for creating forest map in 2020 using satellite images 

Download Landsat 8 image dated on 14 November 2020 with radiation correction, 

orthogonal geometry correction, using ground control points and DEM. Convert the image 

coordinates to the coordinate system with the local meridian axis of Ba Ria - Vung Tau 

province which is 107 degrees 45 minutes, then crop the image according to the boundary of 

the study area. 

The Normalized Difference Vegetation Index (NDVI) is a crucial metric in remote 

sensing and environmental monitoring. It provides valuable insights into vegetation health 

and density. The NDVI quantifies the greenness or vegetation vigor of an area based on 

spectral data [28]. It is calculated using the reflectance values from two specific bands: Red 

band (usually around 650-680 nm wavelength); Near-infrared (NIR) band (typically around 

750-900 nm wavelength) [29]. The NDVI formula is as follows: 

                   NDVI = 
NIR - Red
NIR + Red

                               (1) 

NDVI images are calculated at a resolution equal to that of Landsat 8 images, which is 

30 meters. Comparing documents on the boundaries of forest subdivisions reported by the 

local authority, combined with the opinions of experts in the field of forestry through expert 

consultation, NDVI thresholds were divided into five classes as shown in Table 2. 

Table 2. NDVI threshold for forest classification. 

Class NDVI thresholds 

Water NDVI  -0.07 

Bare land -0.07 < NDVI  -0.01 

Recovering forests -0.01 < NDVI  0.05 

Growing forests 0.05 < NDVI  0.11 

Old forests NDVI > 0.11 

Maps created from satellite images always have certain errors that can stem from the 

image acquisition method of the device’s sensor to the image classification process. 

Therefore, classification accuracy is often used to evaluate the quality of classified satellite 

images. Create 277 randomly distributed sample points on the classification results and 

Google Earth images, then build a classification error matrix. 

Forest change map for the period 2020-2023 was created by overlaying the forest map 

in 2020 and the forest map in 2023. Use the query tool to search for unchanging and changing 

forest types, then label the areas of the forest change map. 

3. Results 

In 2020, a forest map was created using Landsat 8 satellite imagery. The map’s accuracy 

was assessed post-classification, utilizing 277 sample points. These points were used to 

evaluate five distinct land cover types: water, bare land, recovering forest, growing forest, 

and old forest. The classification accuracy results are documented in Table 3. 
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Table 3. The results of post-classification accuracy assessment. 

Land cover type 
Classified 

total 

Reference 

total 

Number 

correct 

Producers 

Accuracy (%) 

Users  

Accuracy (%) 

Water 9 9 9 100.0 100.0 

Bare land 51 49 48 98.0 94.1 

Recovering forests 32 35 30 85.7 93.7 

Growing forests 68 85 65 76.5 95.6 

Old forests 117 99 99 100.0 84.6 

Overall accuracy (%) = 90.6%; Kappa coefficient = 0.87. 

The overall accuracy and kappa coefficient, as indicated in Table 3, demonstrate a strong 

agreement between the classification results and the reference data source. In 2020, a 

thematic map was created for the study area, covering 2.23 km². Within this area, various 

land cover types were identified, including water (occupying 0.02 km²), bare land (covering 

0.34 km²), recovering forest (encompassing 0.10 km²), growing forest (spanning 0.22 km²), 

and old forest (dominating the landscape at 1.55 km²) (Table 4). This comprehensive map 

provides valuable insights into the distribution and dynamics of land cover within the specific 

study area. 

Table 4. Distribution of forest land types in the 2020 forest map. 

Land cover type Number of Polygons Area (km2) Percentage of Area 

Water 6 0.02 0.9 

Bare land 111 0.34 15.2 

Recovering forests 35 0.10 4.5 

Growing forests 55 0.22 9.9 

Old forests 53 1.55 69.5 

Total 260 2.23 100.0 

The 2020 forest map was established in the VN-2000 coordinate system, the map scale 

is 1:10,000 with map components such as north arrow, location diagram, legend (Figure 4). 

 

Figure 4. Forest map of Phuoc Thuan commune, Xuyen Moc district, Ba Ria - Vung Tau province in 2020. 

Derived from an image map with an impressive resolution of 2.89 centimeters, the 2023 

forest map exhibits exceptional sharpness. Consequently, the results of interpretation and 

digitization align remarkably well with the outcomes from field tests. In 2023, the forest 
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cover spans a total area of 2.23 km2. Within this area, water cover constitutes 0.9%, bare land 

occupies 11.2%, recovering forests account for 8.1%, growing forest encompasses 9.8%, and 

old forests comprise 70%. 

Table 5. Distribution of forest land types in the 2023 forest map. 

Land cover type Number of Polygons Area (km2) Percentage of Area 

Water 6 0.02 0.9 

Bare land 87 0.25 11.2 

Recovering forests 57 0.18 8.1 

Growing forests 52 0.22 9.8 

Old forests 58 1.56 70.0 

Total 260 2.23 100.0 

From the forest map in figure 5, the dark green color represents old forests that occupy 

most of the area in the study area. 

 

Figure 5. Forest map of Phuoc Thuan commune, Xuyen Moc district, Ba Ria - Vung Tau province in 2023. 

Overlay the forest map from 2020 with the forest map from 2023 to detect changes in 

forest types. The variation results on the map in Figure 6 indicate that certain locations within 

the study area have experienced changes in cover types, as depicted by the scattered red 

polygons. The water surface did not change during this assessment period. In the period 2020-

2023, the forest area to be changed is 9.37 hectares, accounting for 4.1% (Table 6a). 

Specifically, bare land decreased by a substantial area of 8.08 hectares, while restored forests 

increaseed by a remarkable area of 7.85 hectares (which includes the area from bare land 

changed to recovering forest and from recovering forest to growing forest). Additionally, 

growing forests had a slight decrease of approximately 0.39 hectares, while old forests 

increased around 0.62 hectares (Table 6b). These alterations reflect the dynamic and intricate 

nature of forest ecosystems, where various land categories undergone transformations over 

time. 

Table 6a. Changes in land cover types. 

ID Land cover type 2020 Land cover type 2023 Area (ha) 

1 Old forests Bare land 0.11 

2 Bare land Recovering forests 8.19 

3 Recovering forests Growing forests 0.34 

4 Growing forests Old forests 0.73 

Total   9.37 
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Table 6b. The change (increase or decrease) in the area of each type of land cover type. 

ID Land cover type Area (ha) 

1 Water 0.00 

2 Bare land -8.08 

3 Recovering forests +7.85 

4 Growing forests -0.39 

5 Old forests +0.62 

In the span of three years, Table 6a illustrates a remarkable transition from bare land to 

recovering forest land. This shift is driven by investments in tree planting to protect the 

environment for both humans and creatures. Initially in a recovering state, the forest 

gradually regained ecological balance, growing in height and canopy. It then transitioned to 

a growing forest. Simultaneously, the forest evolved from a growing to an old forest. 

However, selective tree cutting occurs even in old forests to prepare space for new saplings, 

ensuring a balance between regeneration and conservation. This dynamic interplay reflects 

nature’s intricate dance, emphasizing the need for sustainable forest management. 

 

Figure 6. Forest changemap for the period 2020-2023. 

4. Discussion 

The purpose of error matrix for Landsat images is to compare the classification results 

on Landsat 8 images with Google Earth images (or in the field). The accuracy assessment of 

the forest by on-site examination (in the field) is not a good idea, because it is impossible to 

recognize what type of forest when standing in a location in the forest. Instead, we can only 

see the tree trunks, not the tree canopy. Meanwhile, UAV images have higher resolution than 

Google Earth images, visual interpretation on UAV images has achieved reliable results. 

Therefore, the accuracy of the 2023 forest map (by UAV) was not evaluated. 

In this study, we examined the synergy of UAV data and Landsat 8 image data from a 

previous time to assess changes in forest types and other land covers, including water and 

bare land. Due to the relatively short research period (3 years), only approximately 4.1% of 

the total land area experienced alterations. 

There is a fact that we are examining the feasibility of UAV deployment to monitor forest 

growth and development over time. Unfortunately, due to the absence of UAV data in 2020, 
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we had to reply on Landsat 8 data as an alternative. Therefore, this is a limitation of this study 

in which imagery data is not the same type. Of course, this aspect was mentioned in the 

Conclusion section for future directions.  

Compared to the results from the study [30], it shows that using a combination of UAV 

images with Quickbird and Ikonos satellite images will result in only a small difference in 

resolution when overlaying the map, thereby yielding more reasonable results. The 12-year 

study period also revealed significant changes in forest cover. The results demonstrate the 

transformation from forest land to urban land or vacant land with different construction forms. 

While it is necessary to pay for the use of high-resolution satellite images (Quickbird, Ikonos) 

to achieve similar resolution as UAV images, the Landsat 8 images used in our study are free 

and can be easily downloaded from the providers’ platforms.  

5. Conclusion 

The research findings indicate that various methods can be employed to generate forest 

maps, including those for monitoring and managing forest changes. In this particular study, 

both UAV (Unmanned Aerial Vehicle) photos and Landsat 8 satellite images were effectively 

deployed to create forest maps for the years 2020 and 2023. The analysis revealed that 9.37 

hectares of forest area underwent changes during this period, accounting for approximately 

4.1% of the total area investigated. The observed movement trend aligns with natural laws 

and forest development principles. Forest maps generated using UAVs offer flexibility, 

allowing access to challenging and hazardous areas such as mudflats or regions with dense 

tree root networks. Additionally, UAVs capture images at a finer resolution compared to 

satellite images, resulting in better image quality. While UAVs provide advantages, using 

satellite images remains more cost-effective, and satellite data also facilitates the collection 

of historical image data. In summary, both UAVs and satellite imagery play crucial roles in 

forest mapping, each offering distinct benefits. Researchers and forest managers can choose 

the most suitable approach based on their specific needs and available resources. 

In order to objectively assess the accuracy, it is essential to consider the differences in 

resolution and accuracy between UAV images and Landsat 8 satellite images, which are 

essential factors to perform a better and more reliable forest map. In order to achieve these, 

field verification data becomes crucial. Additionally, expanding the assessment over multiple 

periods and a broader research area will allow us to demonstrate the progression of changes 

and understand the underlying patterns of forest dynamics within the region. Notably, these 

study’s results reflect the imagery data from Landsat 8 (2020) and UAV (2023), which are 

not the same type of data. These results provided an acceptable insight into perspective of 

data absent in the past. However, future directions of this barrier can be solved to tackle 

missing and absence of past data and information. Once this obstruction is unveiled, the data 

to provide the management practices of forest and natural resources will be more reliable and 

is a huge improvement. 
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